ANÁLISIS COMPARATIVO DE LAS PROPIEDADES ESTRUCTURALES DE UNA MICELA DE SDS EN AGUA Y SU INTERACCIÓN CON EL SOLVENTE USANDO LOS MODELOS CHARMM36/TIP3P Y GROMOS53A6/SPC
A COMPARATIVE ANALYSIS OF THE STRUCTURAL PROPERTIES OF A SDS MICELLE IN WATER AND ITS INTERACTION WITH THE SOLVENT USING THE CHARMM36/TIP3P AND GOMOS53A6/SPC MODELS
DOI:
https://doi.org/10.15446/rev.fac.cienc.v14n2.118745Palabras clave:
Campos de Fuerza, Dinámica Molecular, Micela, Surfactante (es)Force Fields, Molecular Dynamics, Micelle, Surfactant (en)
Descargas
Se evaluaron las propiedades estructurales y dinámicas de una micela de dodecil sulfato de sodio (SDS) en agua mediante simulaciones de dinámica molecular con dos combinaciones de campos de fuerza: CHARMM36/TIP3P y GROMOS53A6/SPC. Se determinaron las propiedades como el radio de giro, la superficie accesible al solvente, la energía libre de solvatación y las interacciones moleculares entre la parte hidrófila y el agua. Los resultados muestran que la combinación de modelos CHARMM36/TIP3P predice un mayor número de enlaces de hidrógeno y una interacción más fuerte entre el grupo sulfato y el agua, mientras que GROMOS53A6/SPC estima una mayor energía de solvatación, lo que indica una alta afinidad de la micela por el agua. Ambos campos de fuerza describen adecuadamente el sistema micelar; sin embargo, los modelos CHARMM36/TIP3P combinados ofrecen una mayor precisión en la descripción de las interacciones moleculares.
The structural and dynamic properties of a sodium dodecyl sulfate (SDS) micelle in water were evaluated using molecular dynamics simulations with two force field combinations: CHARMM36/TIP3P and GROMOS53A6/SPC. Properties such as radius of gyration, solvent accessible surface area, solvation free energy and molecular interactions between the hydrophilic part and water were determined. The results show that the CHARMM36/TIP3P model combination predicts a higher number of hydrogen bonds and a stronger interaction between the sulfate group and water, while GROMOS53A6/SPC estimates a higher solvation energy, indicating a high affinity of the micelle for water. Both these force fields appropriately describe the micellar system; however, the combined CHARMM36/TIP3P models provide greater accuracy in describing the molecular interactions.
Referencias
Abdel-Azeim, S. (2020). Revisiting OPLS-AA force field for the simulation of anionic surfactants in concentrated electrolyte solutions. Journal of Chemical Theory and Computation, 16(2), 1136-1145. https://doi.org/10.1021/acs.jctc.9b00947 DOI: https://doi.org/10.1021/acs.jctc.9b00947
Almgren, M., Gimel, J. C., Wang, K., Karlsson, G., Edwards, K., Brown, W., & Mortensen, K. (1998). SDS micelles at high ionic strength. A light scattering, neutron scattering, fluorescence quenching, and cryoTEM investigation. Journal of colloid and interface science, 202(2), 222-231. https://doi.org/10.1006/jcis.1998.5503 DOI: https://doi.org/10.1006/jcis.1998.5503
Aoun, B., Sharma, V. K., Pellegrini, E., Mitra, S., Johnson, M., & Mukhopadhyay, R. (2015). Structure and dynamics of ionic micelles: MD simulation and neutron scattering study. The Journal of Physical Chemistry B, 119(15), 5079-5086. https://doi.org/10.1021/acs.jpcb.5b00020 DOI: https://doi.org/10.1021/acs.jpcb.5b00020
Awad, H., Rawas-Qalaji, M., El Hosary, R., Jagal, J., & Ahmed, I. S. (2023). Formulation and optimization of ivermectin nanocrystals for enhanced topical delivery. International Journal of Pharmaceutics: X, 6, 100210. https://doi.org/10.1016/j.ijpx.2023.100210 DOI: https://doi.org/10.1016/j.ijpx.2023.100210
Bendedouch, D., Chen, S. H., & Koehler, W. C. (1983). Structure of ionic micelles from small angle neutron scattering. The Journal of Physical Chemistry, 87(1), 153-159. https://doi.org/10.1021/j100224a033 DOI: https://doi.org/10.1021/j100224a033
Berendsen, H. J., Postma, J. P., van Gunsteren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In Intermolecular forces: proceedings of the fourteenth Jerusalem symposium on quantum chemistry and biochemistry held in jerusalem, israel, april 13–16, 1981 (pp. 331-342). Springer Netherlands. DOI: https://doi.org/10.1007/978-94-015-7658-1_21
Boonstra, S., Onck, P. R., & van der Giessen, E. (2016). CHARMM36 TIP3P water model suppresses peptide folding by solvating the unfolded state. The journal of physical chemistry B, 120(15), 3692-3698. https://doi.org/10.1021/acs.jpcb.6b01316 DOI: https://doi.org/10.1021/acs.jpcb.6b01316
Bruce, C. D., Berkowitz, M. L., Perera, L., & Forbes, M. D. (2002). Molecular dynamics simulation of sodium dodecyl sulfate micelle in water: micellar structural characteristics and counterion distribution. The Journal of Physical Chemistry B, 106(15), 3788-3793. https://doi.org/10.1021/jp013616z DOI: https://doi.org/10.1021/jp013616z
Cabane, B., Duplessix, R. T., & Zemb, T. (1985). High resolution neutron scattering on ionic surfactant micelles: SDS in water. Journal De Physique, 46(12), 2161-2178. DOI: 10.1051/jphys:0198500460120216100 DOI: https://doi.org/10.1051/jphys:0198500460120216100
Chun, B. J., Choi, J. I., & Jang, S. S. (2015). Molecular dynamics simulation study of sodium dodecyl sulfate micelle: Water penetration and sodium dodecyl sulfate dissociation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 474, 36-43. https://doi.org/10.1016/j.colsurfa.2015.03.002 DOI: https://doi.org/10.1016/j.colsurfa.2015.03.002
Cui, X., Jiang, Y., Yang, C., Lu, X., Chen, H., Mao, S., Lui, M., Yuan, H., Luo, P. & Du, Y. (2010). Mechanism of the mixed surfactant micelle formation. The Journal of Physical Chemistry B, 114(23), 7808-7816. https://doi.org/10.1021/jp101032z DOI: https://doi.org/10.1021/jp101032z
Eisenberg, D., & McLachlan, A. D. (1986). Solvation energy in protein folding and binding. Nature, 319(6050), 199-203. https://doi.org/10.1038/319199a0 DOI: https://doi.org/10.1038/319199a0
Eisenhaber, F., Lijnzaad, P., Argos, P., Sander, C., & Scharf, M. (1995). The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. Journal of computational chemistry, 16(3), 273-284. https://doi.org/10.1002/jcc.540160303 DOI: https://doi.org/10.1002/jcc.540160303
Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of chemical physics, 103(19), 8577-8593. https://doi.org/10.1063/1.470117 DOI: https://doi.org/10.1063/1.470117
Goh, G. B., Eike, D. M., Murch, B. P., & Brooks III, C. L. (2015). Accurate modeling of ionic surfactants at high concentration. The Journal of Physical Chemistry B, 119(20), 6217-6224. https://doi.org/10.1021/acs.jpcb.5b01765 DOI: https://doi.org/10.1021/acs.jpcb.5b01765
Hamley, I. W., & Castelletto, V. (2024). Sodium Dodecyl Sulfate Micelles: Accurate Analysis of Small-Angle X-ray Scattering Data Through Form Factor and Atomistic Molecular Dynamics Modelling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 134394. https://doi.org/10.1016/j.colsurfa.2024.134394 DOI: https://doi.org/10.1016/j.colsurfa.2024.134394
Hammouda, B. (2013). Temperature effect on the nanostructure of SDS micelles in water. Journal of research of the National Institute of Standards and Technology, 118, 151. http://dx.doi.org/10.6028/jres.118.008 DOI: https://doi.org/10.6028/jres.118.008
Itri, R., & Amaral, L. Q. (1991). Distance distribution function of sodium dodecyl sulfate micelles by x-ray scattering. The Journal of Physical Chemistry, 95(1), 423-427. https://doi.org/10.1021/j100154a074 DOI: https://doi.org/10.1021/j100154a074
Jalili, S., & Akhavan, M. (2009). A coarse-grained molecular dynamics simulation of a sodium dodecyl sulfate micelle in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 352(1-3), 99-102. https://doi.org/10.1016/j.colsurfa.2009.10.007 DOI: https://doi.org/10.1016/j.colsurfa.2009.10.007
Koziara, K. B., Stroet, M., Malde, A. K., & Mark, A. E. (2014). Testing and validation of the Automated Topology Builder (ATB) version 2.0: prediction of hydration free enthalpies. Journal of computer-aided molecular design, 28, 221-233. https://doi.org/10.1007/s10822-014-9713-7 DOI: https://doi.org/10.1007/s10822-014-9713-7
Lebecque, S., Crowet, J. M., Nasir, M. N., Deleu, M., & Lins, L. (2017). Molecular dynamics study of micelles properties according to their size. Journal of Molecular Graphics and Modelling, 72, 6-15. https://doi.org/10.1016/j.jmgm.2016.12.007 DOI: https://doi.org/10.1016/j.jmgm.2016.12.007
Lee, J., Cheng, X., Jo, S., MacKerell, A. D., Klauda, J. B., & Im, W. (2016). CHARMM36-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM36/OpenMM simulations using the CHARMM3636 additive force field. Biophysical journal, 110(3), 641a. https://doi.org/10.1021/acs.jctc.5b00935 DOI: https://doi.org/10.1016/j.bpj.2015.11.3431
Mackerell Jr, A. D. (1995). Molecular dynamics simulation analysis of a sodium dodecyl sulfate micelle in aqueous solution: decreased fluidity of the micelle hydrocarbon interior. The Journal of Physical Chemistry, 99(7), 1846-1855. https://doi.org/10.1021/j100007a011 DOI: https://doi.org/10.1021/j100007a011
Martínez, L., Andrade, R., Birgin, E. G., & Martínez, J. M. (2009). PACKMOL: A package for building initial configurations for molecular dynamics simulations. Journal of computational chemistry, 30(13), 2157-2164. https://doi.org/10.1002/jcc.21224 DOI: https://doi.org/10.1002/jcc.21224
Mohanty, S., Jasmine, J., & Mukherji, S. (2013). Practical considerations and challenges involved in surfactant enhanced bioremediation of oil. BioMed research international, 2013(1), 328608. https://doi.org/10.1155/2013/328608 DOI: https://doi.org/10.1155/2013/328608
Nosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. The Journal of chemical physics, 81(1), 511-519. https://doi.org/10.1063/1.447334 DOI: https://doi.org/10.1063/1.447334
Oostenbrink, C., Villa, A., Mark, A. E., & Van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force‐field parameter sets 53A5 and 53A6. Journal of computational chemistry, 25(13), 1656-1676. https://doi.org/10.1002/jcc.20090 DOI: https://doi.org/10.1002/jcc.20090
Palazzesi, F., Calvaresi, M., & Zerbetto, F. (2011). A molecular dynamics investigation of structure and dynamics of SDS and SDBS micelles. Soft Matter, 7(19), 9148-9156. https://doi.org/10.1039/C1SM05708A DOI: https://doi.org/10.1039/c1sm05708a
Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied physics, 52(12), 7182-7190. https://doi.org/10.1063/1.328693 DOI: https://doi.org/10.1063/1.328693
Pisárčik, M., Devínsky, F., & Pupák, M. (2015). Determination of micelle aggregation numbers of alkyltrimethylammonium bromide and sodium dodecyl sulfate surfactants using time-resolved fluorescence quenching. Open Chemistry, 13(1), 000010151520150103. https://doi.org/10.1515/chem-2015-0103 DOI: https://doi.org/10.1515/chem-2015-0103
Rasheed, T., Shafi, S., Bilal, M., Hussain, T., Sher, F., & Rizwan, K. (2020). Surfactants-based remediation as an effective approach for removal of environmental pollutants-A review. Journal of Molecular Liquids, 318, 113960. https://doi.org/10.1016/j.molliq.2020.113960 DOI: https://doi.org/10.1016/j.molliq.2020.113960
Rosen, M. J., & Kunjappu, J. T. (2012). Surfactants and interfacial phenomena. John Wiley & Sons. DOI:10.1002/9781118228920 DOI: https://doi.org/10.1002/9781118228920
Roussel, G., Michaux, C., & Perpète, E. A. (2014). Multiscale molecular dynamics simulations of sodium dodecyl sulfate micelles: from coarse-grained to all-atom resolution. Journal of molecular modeling, 20, 1-8. https://doi.org/10.1007/s00894-014-2469-0 DOI: https://doi.org/10.1007/s00894-014-2469-0
Sar, P., & Saha, B. (2020). Potential application of Micellar nanoreactor for electron transfer reactions mediated by a variety of oxidants: A review. Advances in Colloid and Interface Science, 284, 102241. https://doi.org/10.1016/j.cis.2020.102241 DOI: https://doi.org/10.1016/j.cis.2020.102241
Shah, A., Shahzad, S., Munir, A., Nadagouda, M. N., Khan, G. S., Shams, D. F., ... & Rana, U. A. (2016). Micelles as soil and water decontamination agents. Chemical reviews, 116(10), 6042-6074. https://doi.org/10.1021/acs.chemrev.6b00132 DOI: https://doi.org/10.1021/acs.chemrev.6b00132
Shelley, J., Watanabe, K., & Klein, M. L. (1990). Simulation of a sodium dodecylsulfate micelle in aqueous solution. International Journal of Quantum Chemistry, 38(S17), 103-117. https://doi.org/10.1002/qua.560381713 DOI: https://doi.org/10.1002/qua.560381713
Sorhie, V., Gogoi, B., Walling, B., Acharjee, S. A., & Bharali, P. (2022). Role of micellar nanoreactors in organic chemistry: Green and synthetic surfactant review. Sustainable Chemistry and Pharmacy, 30, 100875. https://doi.org/10.1016/j.scp.2022.100875 DOI: https://doi.org/10.1016/j.scp.2022.100875
Sutherland, E., Mercer, S. M., Everist, M., & Leaist, D. G. (2009). Diffusion in solutions of micelles. What does dynamic light scattering measure? Journal of Chemical & Engineering Data, 54(2), 272-278. https://doi.org/10.1021/je800284g DOI: https://doi.org/10.1021/je800284g
Tadros, T. F. (2014). An introduction to surfactants. Walter de Gruyter. https://doi.org/10.1515/9783110312133 DOI: https://doi.org/10.1515/9783110312133
Tang, X., Koenig, P. H., & Larson, R. G. (2014). Molecular Dynamics Simulations of Sodium Dodecyl Sulfate Micelles in Water-The Effect of the Force Field. The Journal of Physical Chemistry B, 118(14), 3864-3880. https://doi.org/10.1021/jp410689m DOI: https://doi.org/10.1021/jp410689m
Thévenot, C., Grassl, B., Bastiat, G., & Binana, W. (2005). Aggregation number and critical micellar concentration of surfactant determined by time-dependent static light scattering (TDSLS) and conductivity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 252(2-3), 105-111. https://doi.org/10.1016/j.colsurfa.2004.10.062 DOI: https://doi.org/10.1016/j.colsurfa.2004.10.062
Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: fast, flexible, and free. Journal of computational chemistry, 26(16), 1701-1718. https://doi.org/10.1002/jcc.20291 DOI: https://doi.org/10.1002/jcc.20291
Vanommeslaeghe, K., & MacKerell Jr, A. D. (2012). Automation of the CHARMM36 General Force Field (CGenFF) I: bond perception and atom typing. Journal of chemical information and modeling, 52(12), 3144-3154. https://doi.org/10.1021/ci300363c DOI: https://doi.org/10.1021/ci300363c
Yoshii, N., & Okazaki, S. (2007). A molecular dynamics study of structure and dynamics of surfactant molecules in SDS spherical micelle. Condensed Matter Physics, 10(4)(52), 573-578. https://doi.org/10.5488/CMP.10.4.573 DOI: https://doi.org/10.5488/CMP.10.4.573
Yoshii, N., Fujimoto, K., & Okazaki, S. (2016). Molecular dynamics study of the structure of anionic SDS, cationic DTAC, zwitterionic DDAO, and nonionic C12E8 spherical micelles in solution. Journal of Molecular Liquids, 217, 99-102. https://doi.org/10.1016/j.molliq.2015.12.062 DOI: https://doi.org/10.1016/j.molliq.2015.12.062
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Revista de la Facultad de Ciencias

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores o titulares del derecho de autor de cada artículo confieren a la Revista de la Facultad de Ciencias de la Universidad Nacional de Colombia una autorización no exclusiva, limitada y gratuita sobre el artículo que una vez evaluado y aprobado se envía para su posterior publicación ajustándose a las siguientes características:
1. Se remite la versión corregida de acuerdo con las sugerencias de los evaluadores y se aclara que el artículo mencionado se trata de un documento inédito sobre el que se tienen los derechos que se autorizan y se asume total responsabilidad por el contenido de su obra ante la Revista de la Facultad de Ciencias, la Universidad Nacional de Colombia y ante terceros.
2. La autorización conferida a la revista estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo de la Revista de la Facultad de Ciencias en el Sistema Open Journal Systems y en la página principal de la revista (https://revistas.unal.edu.co/index.php/rfc/index), así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.
3. Los autores autorizan a la Revista de la Facultad de Ciencias de la Universidad Nacional de Colombia para publicar el documento en el formato en que sea requerido (impreso, digital, electrónico o cualquier otro conocido o por conocer) y autorizan a la Revista de la Facultad de Ciencias para incluir la obra en los índices y buscadores que estimen necesarios para promover su difusión.
4. Los autores aceptan que la autorización se hace a título gratuito, por lo tanto renuncian a recibir emolumento alguno por la publicación, distribución, comunicación pública y cualquier otro uso que se haga en los términos de la presente autorización.
5. Todos los contenidos de la Revista de la Facultad de Ciencias, están publicados bajo la Licencia Creative Commons Atribución – No comercial – Sin Derivar 4.0.
MODELO DE CARTA DE PRESENTACIÓN y CESIÓN DE DERECHOS DE AUTOR








