Publicado

2025-07-01

ANÁLISIS COMPARATIVO DE LAS PROPIEDADES ESTRUCTURALES DE UNA MICELA DE SDS EN AGUA Y SU INTERACCIÓN CON EL SOLVENTE USANDO LOS MODELOS CHARMM36/TIP3P Y GROMOS53A6/SPC

A COMPARATIVE ANALYSIS OF THE STRUCTURAL PROPERTIES OF A SDS MICELLE IN WATER AND ITS INTERACTION WITH THE SOLVENT USING THE CHARMM36/TIP3P AND GOMOS53A6/SPC MODELS

DOI:

https://doi.org/10.15446/rev.fac.cienc.v14n2.118745

Palabras clave:

Campos de Fuerza, Dinámica Molecular, Micela, Surfactante (es)
Force Fields, Molecular Dynamics, Micelle, Surfactant (en)

Descargas

Autores/as

Se evaluaron las propiedades estructurales y dinámicas de una micela de dodecil sulfato de sodio (SDS) en agua mediante simulaciones de dinámica molecular con dos combinaciones de campos de fuerza: CHARMM36/TIP3P y GROMOS53A6/SPC. Se determinaron las propiedades como el radio de giro, la superficie accesible al solvente, la energía libre de solvatación y las interacciones moleculares entre la parte hidrófila y el agua. Los resultados muestran que la combinación de modelos CHARMM36/TIP3P predice un mayor número de enlaces de hidrógeno y una interacción más fuerte entre el grupo sulfato y el agua, mientras que GROMOS53A6/SPC estima una mayor energía de solvatación, lo que indica una alta afinidad de la micela por el agua. Ambos campos de fuerza describen adecuadamente el sistema micelar; sin embargo, los modelos CHARMM36/TIP3P combinados ofrecen una mayor precisión en la descripción de las interacciones moleculares.

The structural and dynamic properties of a sodium dodecyl sulfate (SDS) micelle in water were evaluated using molecular dynamics simulations with two force field combinations: CHARMM36/TIP3P and GROMOS53A6/SPC. Properties such as radius of gyration, solvent accessible surface area, solvation free energy and molecular interactions between the hydrophilic part and water were determined. The results show that the CHARMM36/TIP3P model combination predicts a higher number of hydrogen bonds and a stronger interaction between the sulfate group and water, while GROMOS53A6/SPC estimates a higher solvation energy, indicating a high affinity of the micelle for water. Both these force fields appropriately describe the micellar system; however, the combined CHARMM36/TIP3P models provide greater accuracy in describing the molecular interactions.

Referencias

Abdel-Azeim, S. (2020). Revisiting OPLS-AA force field for the simulation of anionic surfactants in concentrated electrolyte solutions. Journal of Chemical Theory and Computation, 16(2), 1136-1145. https://doi.org/10.1021/acs.jctc.9b00947 DOI: https://doi.org/10.1021/acs.jctc.9b00947

Almgren, M., Gimel, J. C., Wang, K., Karlsson, G., Edwards, K., Brown, W., & Mortensen, K. (1998). SDS micelles at high ionic strength. A light scattering, neutron scattering, fluorescence quenching, and cryoTEM investigation. Journal of colloid and interface science, 202(2), 222-231. https://doi.org/10.1006/jcis.1998.5503 DOI: https://doi.org/10.1006/jcis.1998.5503

Aoun, B., Sharma, V. K., Pellegrini, E., Mitra, S., Johnson, M., & Mukhopadhyay, R. (2015). Structure and dynamics of ionic micelles: MD simulation and neutron scattering study. The Journal of Physical Chemistry B, 119(15), 5079-5086. https://doi.org/10.1021/acs.jpcb.5b00020 DOI: https://doi.org/10.1021/acs.jpcb.5b00020

Awad, H., Rawas-Qalaji, M., El Hosary, R., Jagal, J., & Ahmed, I. S. (2023). Formulation and optimization of ivermectin nanocrystals for enhanced topical delivery. International Journal of Pharmaceutics: X, 6, 100210. https://doi.org/10.1016/j.ijpx.2023.100210 DOI: https://doi.org/10.1016/j.ijpx.2023.100210

Bendedouch, D., Chen, S. H., & Koehler, W. C. (1983). Structure of ionic micelles from small angle neutron scattering. The Journal of Physical Chemistry, 87(1), 153-159. https://doi.org/10.1021/j100224a033 DOI: https://doi.org/10.1021/j100224a033

Berendsen, H. J., Postma, J. P., van Gunsteren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In Intermolecular forces: proceedings of the fourteenth Jerusalem symposium on quantum chemistry and biochemistry held in jerusalem, israel, april 13–16, 1981 (pp. 331-342). Springer Netherlands. DOI: https://doi.org/10.1007/978-94-015-7658-1_21

Boonstra, S., Onck, P. R., & van der Giessen, E. (2016). CHARMM36 TIP3P water model suppresses peptide folding by solvating the unfolded state. The journal of physical chemistry B, 120(15), 3692-3698. https://doi.org/10.1021/acs.jpcb.6b01316 DOI: https://doi.org/10.1021/acs.jpcb.6b01316

Bruce, C. D., Berkowitz, M. L., Perera, L., & Forbes, M. D. (2002). Molecular dynamics simulation of sodium dodecyl sulfate micelle in water: micellar structural characteristics and counterion distribution. The Journal of Physical Chemistry B, 106(15), 3788-3793. https://doi.org/10.1021/jp013616z DOI: https://doi.org/10.1021/jp013616z

Cabane, B., Duplessix, R. T., & Zemb, T. (1985). High resolution neutron scattering on ionic surfactant micelles: SDS in water. Journal De Physique, 46(12), 2161-2178. DOI: 10.1051/jphys:0198500460120216100 DOI: https://doi.org/10.1051/jphys:0198500460120216100

Chun, B. J., Choi, J. I., & Jang, S. S. (2015). Molecular dynamics simulation study of sodium dodecyl sulfate micelle: Water penetration and sodium dodecyl sulfate dissociation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 474, 36-43. https://doi.org/10.1016/j.colsurfa.2015.03.002 DOI: https://doi.org/10.1016/j.colsurfa.2015.03.002

Cui, X., Jiang, Y., Yang, C., Lu, X., Chen, H., Mao, S., Lui, M., Yuan, H., Luo, P. & Du, Y. (2010). Mechanism of the mixed surfactant micelle formation. The Journal of Physical Chemistry B, 114(23), 7808-7816. https://doi.org/10.1021/jp101032z DOI: https://doi.org/10.1021/jp101032z

Eisenberg, D., & McLachlan, A. D. (1986). Solvation energy in protein folding and binding. Nature, 319(6050), 199-203. https://doi.org/10.1038/319199a0 DOI: https://doi.org/10.1038/319199a0

Eisenhaber, F., Lijnzaad, P., Argos, P., Sander, C., & Scharf, M. (1995). The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. Journal of computational chemistry, 16(3), 273-284. https://doi.org/10.1002/jcc.540160303 DOI: https://doi.org/10.1002/jcc.540160303

Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of chemical physics, 103(19), 8577-8593. https://doi.org/10.1063/1.470117 DOI: https://doi.org/10.1063/1.470117

Goh, G. B., Eike, D. M., Murch, B. P., & Brooks III, C. L. (2015). Accurate modeling of ionic surfactants at high concentration. The Journal of Physical Chemistry B, 119(20), 6217-6224. https://doi.org/10.1021/acs.jpcb.5b01765 DOI: https://doi.org/10.1021/acs.jpcb.5b01765

Hamley, I. W., & Castelletto, V. (2024). Sodium Dodecyl Sulfate Micelles: Accurate Analysis of Small-Angle X-ray Scattering Data Through Form Factor and Atomistic Molecular Dynamics Modelling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 134394. https://doi.org/10.1016/j.colsurfa.2024.134394 DOI: https://doi.org/10.1016/j.colsurfa.2024.134394

Hammouda, B. (2013). Temperature effect on the nanostructure of SDS micelles in water. Journal of research of the National Institute of Standards and Technology, 118, 151. http://dx.doi.org/10.6028/jres.118.008 DOI: https://doi.org/10.6028/jres.118.008

Itri, R., & Amaral, L. Q. (1991). Distance distribution function of sodium dodecyl sulfate micelles by x-ray scattering. The Journal of Physical Chemistry, 95(1), 423-427. https://doi.org/10.1021/j100154a074 DOI: https://doi.org/10.1021/j100154a074

Jalili, S., & Akhavan, M. (2009). A coarse-grained molecular dynamics simulation of a sodium dodecyl sulfate micelle in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 352(1-3), 99-102. https://doi.org/10.1016/j.colsurfa.2009.10.007 DOI: https://doi.org/10.1016/j.colsurfa.2009.10.007

Koziara, K. B., Stroet, M., Malde, A. K., & Mark, A. E. (2014). Testing and validation of the Automated Topology Builder (ATB) version 2.0: prediction of hydration free enthalpies. Journal of computer-aided molecular design, 28, 221-233. https://doi.org/10.1007/s10822-014-9713-7 DOI: https://doi.org/10.1007/s10822-014-9713-7

Lebecque, S., Crowet, J. M., Nasir, M. N., Deleu, M., & Lins, L. (2017). Molecular dynamics study of micelles properties according to their size. Journal of Molecular Graphics and Modelling, 72, 6-15. https://doi.org/10.1016/j.jmgm.2016.12.007 DOI: https://doi.org/10.1016/j.jmgm.2016.12.007

Lee, J., Cheng, X., Jo, S., MacKerell, A. D., Klauda, J. B., & Im, W. (2016). CHARMM36-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM36/OpenMM simulations using the CHARMM3636 additive force field. Biophysical journal, 110(3), 641a. https://doi.org/10.1021/acs.jctc.5b00935 DOI: https://doi.org/10.1016/j.bpj.2015.11.3431

Mackerell Jr, A. D. (1995). Molecular dynamics simulation analysis of a sodium dodecyl sulfate micelle in aqueous solution: decreased fluidity of the micelle hydrocarbon interior. The Journal of Physical Chemistry, 99(7), 1846-1855. https://doi.org/10.1021/j100007a011 DOI: https://doi.org/10.1021/j100007a011

Martínez, L., Andrade, R., Birgin, E. G., & Martínez, J. M. (2009). PACKMOL: A package for building initial configurations for molecular dynamics simulations. Journal of computational chemistry, 30(13), 2157-2164. https://doi.org/10.1002/jcc.21224 DOI: https://doi.org/10.1002/jcc.21224

Mohanty, S., Jasmine, J., & Mukherji, S. (2013). Practical considerations and challenges involved in surfactant enhanced bioremediation of oil. BioMed research international, 2013(1), 328608. https://doi.org/10.1155/2013/328608 DOI: https://doi.org/10.1155/2013/328608

Nosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. The Journal of chemical physics, 81(1), 511-519. https://doi.org/10.1063/1.447334 DOI: https://doi.org/10.1063/1.447334

Oostenbrink, C., Villa, A., Mark, A. E., & Van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force‐field parameter sets 53A5 and 53A6. Journal of computational chemistry, 25(13), 1656-1676. https://doi.org/10.1002/jcc.20090 DOI: https://doi.org/10.1002/jcc.20090

Palazzesi, F., Calvaresi, M., & Zerbetto, F. (2011). A molecular dynamics investigation of structure and dynamics of SDS and SDBS micelles. Soft Matter, 7(19), 9148-9156. https://doi.org/10.1039/C1SM05708A DOI: https://doi.org/10.1039/c1sm05708a

Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied physics, 52(12), 7182-7190. https://doi.org/10.1063/1.328693 DOI: https://doi.org/10.1063/1.328693

Pisárčik, M., Devínsky, F., & Pupák, M. (2015). Determination of micelle aggregation numbers of alkyltrimethylammonium bromide and sodium dodecyl sulfate surfactants using time-resolved fluorescence quenching. Open Chemistry, 13(1), 000010151520150103. https://doi.org/10.1515/chem-2015-0103 DOI: https://doi.org/10.1515/chem-2015-0103

Rasheed, T., Shafi, S., Bilal, M., Hussain, T., Sher, F., & Rizwan, K. (2020). Surfactants-based remediation as an effective approach for removal of environmental pollutants-A review. Journal of Molecular Liquids, 318, 113960. https://doi.org/10.1016/j.molliq.2020.113960 DOI: https://doi.org/10.1016/j.molliq.2020.113960

Rosen, M. J., & Kunjappu, J. T. (2012). Surfactants and interfacial phenomena. John Wiley & Sons. DOI:10.1002/9781118228920 DOI: https://doi.org/10.1002/9781118228920

Roussel, G., Michaux, C., & Perpète, E. A. (2014). Multiscale molecular dynamics simulations of sodium dodecyl sulfate micelles: from coarse-grained to all-atom resolution. Journal of molecular modeling, 20, 1-8. https://doi.org/10.1007/s00894-014-2469-0 DOI: https://doi.org/10.1007/s00894-014-2469-0

Sar, P., & Saha, B. (2020). Potential application of Micellar nanoreactor for electron transfer reactions mediated by a variety of oxidants: A review. Advances in Colloid and Interface Science, 284, 102241. https://doi.org/10.1016/j.cis.2020.102241 DOI: https://doi.org/10.1016/j.cis.2020.102241

Shah, A., Shahzad, S., Munir, A., Nadagouda, M. N., Khan, G. S., Shams, D. F., ... & Rana, U. A. (2016). Micelles as soil and water decontamination agents. Chemical reviews, 116(10), 6042-6074. https://doi.org/10.1021/acs.chemrev.6b00132 DOI: https://doi.org/10.1021/acs.chemrev.6b00132

Shelley, J., Watanabe, K., & Klein, M. L. (1990). Simulation of a sodium dodecylsulfate micelle in aqueous solution. International Journal of Quantum Chemistry, 38(S17), 103-117. https://doi.org/10.1002/qua.560381713 DOI: https://doi.org/10.1002/qua.560381713

Sorhie, V., Gogoi, B., Walling, B., Acharjee, S. A., & Bharali, P. (2022). Role of micellar nanoreactors in organic chemistry: Green and synthetic surfactant review. Sustainable Chemistry and Pharmacy, 30, 100875. https://doi.org/10.1016/j.scp.2022.100875 DOI: https://doi.org/10.1016/j.scp.2022.100875

Sutherland, E., Mercer, S. M., Everist, M., & Leaist, D. G. (2009). Diffusion in solutions of micelles. What does dynamic light scattering measure? Journal of Chemical & Engineering Data, 54(2), 272-278. https://doi.org/10.1021/je800284g DOI: https://doi.org/10.1021/je800284g

Tadros, T. F. (2014). An introduction to surfactants. Walter de Gruyter. https://doi.org/10.1515/9783110312133 DOI: https://doi.org/10.1515/9783110312133

Tang, X., Koenig, P. H., & Larson, R. G. (2014). Molecular Dynamics Simulations of Sodium Dodecyl Sulfate Micelles in Water-The Effect of the Force Field. The Journal of Physical Chemistry B, 118(14), 3864-3880. https://doi.org/10.1021/jp410689m DOI: https://doi.org/10.1021/jp410689m

Thévenot, C., Grassl, B., Bastiat, G., & Binana, W. (2005). Aggregation number and critical micellar concentration of surfactant determined by time-dependent static light scattering (TDSLS) and conductivity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 252(2-3), 105-111. https://doi.org/10.1016/j.colsurfa.2004.10.062 DOI: https://doi.org/10.1016/j.colsurfa.2004.10.062

Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: fast, flexible, and free. Journal of computational chemistry, 26(16), 1701-1718. https://doi.org/10.1002/jcc.20291 DOI: https://doi.org/10.1002/jcc.20291

Vanommeslaeghe, K., & MacKerell Jr, A. D. (2012). Automation of the CHARMM36 General Force Field (CGenFF) I: bond perception and atom typing. Journal of chemical information and modeling, 52(12), 3144-3154. https://doi.org/10.1021/ci300363c DOI: https://doi.org/10.1021/ci300363c

Yoshii, N., & Okazaki, S. (2007). A molecular dynamics study of structure and dynamics of surfactant molecules in SDS spherical micelle. Condensed Matter Physics, 10(4)(52), 573-578. https://doi.org/10.5488/CMP.10.4.573 DOI: https://doi.org/10.5488/CMP.10.4.573

Yoshii, N., Fujimoto, K., & Okazaki, S. (2016). Molecular dynamics study of the structure of anionic SDS, cationic DTAC, zwitterionic DDAO, and nonionic C12E8 spherical micelles in solution. Journal of Molecular Liquids, 217, 99-102. https://doi.org/10.1016/j.molliq.2015.12.062 DOI: https://doi.org/10.1016/j.molliq.2015.12.062

Cómo citar

APA

Parra, J. G., Roldan, A., Rodriguez, G., Alcalá, J. A. & Iza, P. (2025). ANÁLISIS COMPARATIVO DE LAS PROPIEDADES ESTRUCTURALES DE UNA MICELA DE SDS EN AGUA Y SU INTERACCIÓN CON EL SOLVENTE USANDO LOS MODELOS CHARMM36/TIP3P Y GROMOS53A6/SPC. Revista de la Facultad de Ciencias, 14(2), 126–147. https://doi.org/10.15446/rev.fac.cienc.v14n2.118745

ACM

[1]
Parra, J.G., Roldan, A., Rodriguez, G., Alcalá, J.A. y Iza, P. 2025. ANÁLISIS COMPARATIVO DE LAS PROPIEDADES ESTRUCTURALES DE UNA MICELA DE SDS EN AGUA Y SU INTERACCIÓN CON EL SOLVENTE USANDO LOS MODELOS CHARMM36/TIP3P Y GROMOS53A6/SPC. Revista de la Facultad de Ciencias. 14, 2 (jul. 2025), 126–147. DOI:https://doi.org/10.15446/rev.fac.cienc.v14n2.118745.

ACS

(1)
Parra, J. G.; Roldan, A.; Rodriguez, G.; Alcalá, J. A.; Iza, P. ANÁLISIS COMPARATIVO DE LAS PROPIEDADES ESTRUCTURALES DE UNA MICELA DE SDS EN AGUA Y SU INTERACCIÓN CON EL SOLVENTE USANDO LOS MODELOS CHARMM36/TIP3P Y GROMOS53A6/SPC. Rev. Fac. Cienc. 2025, 14, 126-147.

ABNT

PARRA, J. G.; ROLDAN, A.; RODRIGUEZ, G.; ALCALÁ, J. A.; IZA, P. ANÁLISIS COMPARATIVO DE LAS PROPIEDADES ESTRUCTURALES DE UNA MICELA DE SDS EN AGUA Y SU INTERACCIÓN CON EL SOLVENTE USANDO LOS MODELOS CHARMM36/TIP3P Y GROMOS53A6/SPC. Revista de la Facultad de Ciencias, [S. l.], v. 14, n. 2, p. 126–147, 2025. DOI: 10.15446/rev.fac.cienc.v14n2.118745. Disponível em: https://revistas.unal.edu.co/index.php/rfc/article/view/118745. Acesso em: 18 nov. 2025.

Chicago

Parra, José G., Angelesmary Roldan, Geraldine Rodriguez, José A. Alcalá, y Peter Iza. 2025. «ANÁLISIS COMPARATIVO DE LAS PROPIEDADES ESTRUCTURALES DE UNA MICELA DE SDS EN AGUA Y SU INTERACCIÓN CON EL SOLVENTE USANDO LOS MODELOS CHARMM36/TIP3P Y GROMOS53A6/SPC». Revista De La Facultad De Ciencias 14 (2):126-47. https://doi.org/10.15446/rev.fac.cienc.v14n2.118745.

Harvard

Parra, J. G., Roldan, A., Rodriguez, G., Alcalá, J. A. y Iza, P. (2025) «ANÁLISIS COMPARATIVO DE LAS PROPIEDADES ESTRUCTURALES DE UNA MICELA DE SDS EN AGUA Y SU INTERACCIÓN CON EL SOLVENTE USANDO LOS MODELOS CHARMM36/TIP3P Y GROMOS53A6/SPC», Revista de la Facultad de Ciencias, 14(2), pp. 126–147. doi: 10.15446/rev.fac.cienc.v14n2.118745.

IEEE

[1]
J. G. Parra, A. Roldan, G. Rodriguez, J. A. Alcalá, y P. Iza, «ANÁLISIS COMPARATIVO DE LAS PROPIEDADES ESTRUCTURALES DE UNA MICELA DE SDS EN AGUA Y SU INTERACCIÓN CON EL SOLVENTE USANDO LOS MODELOS CHARMM36/TIP3P Y GROMOS53A6/SPC», Rev. Fac. Cienc., vol. 14, n.º 2, pp. 126–147, jul. 2025.

MLA

Parra, J. G., A. Roldan, G. Rodriguez, J. A. Alcalá, y P. Iza. «ANÁLISIS COMPARATIVO DE LAS PROPIEDADES ESTRUCTURALES DE UNA MICELA DE SDS EN AGUA Y SU INTERACCIÓN CON EL SOLVENTE USANDO LOS MODELOS CHARMM36/TIP3P Y GROMOS53A6/SPC». Revista de la Facultad de Ciencias, vol. 14, n.º 2, julio de 2025, pp. 126-47, doi:10.15446/rev.fac.cienc.v14n2.118745.

Turabian

Parra, José G., Angelesmary Roldan, Geraldine Rodriguez, José A. Alcalá, y Peter Iza. «ANÁLISIS COMPARATIVO DE LAS PROPIEDADES ESTRUCTURALES DE UNA MICELA DE SDS EN AGUA Y SU INTERACCIÓN CON EL SOLVENTE USANDO LOS MODELOS CHARMM36/TIP3P Y GROMOS53A6/SPC». Revista de la Facultad de Ciencias 14, no. 2 (julio 1, 2025): 126–147. Accedido noviembre 18, 2025. https://revistas.unal.edu.co/index.php/rfc/article/view/118745.

Vancouver

1.
Parra JG, Roldan A, Rodriguez G, Alcalá JA, Iza P. ANÁLISIS COMPARATIVO DE LAS PROPIEDADES ESTRUCTURALES DE UNA MICELA DE SDS EN AGUA Y SU INTERACCIÓN CON EL SOLVENTE USANDO LOS MODELOS CHARMM36/TIP3P Y GROMOS53A6/SPC. Rev. Fac. Cienc. [Internet]. 1 de julio de 2025 [citado 18 de noviembre de 2025];14(2):126-47. Disponible en: https://revistas.unal.edu.co/index.php/rfc/article/view/118745

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

219

Descargas

Los datos de descargas todavía no están disponibles.