Publicado

2014-07-01

Esponjas marinas: ¿producción biotecnológica sostenible?

Marine sponge: a sustainable biotechnological production?

Palabras clave:

Esponjas marinas, medicamentos, metabolitos, producción de biomasa (es)
Biomass production, marine sponges, medicines, metabolites (en)

Descargas

Autores/as

  • Lina Blandón Universidad Nacional de Colombia. Sede Medellín
  • Natalia Estrada
  • Juan López
  • María Márquez
El cáncer es una enfermedad con amplia incidencia a nivel mundial. La mayoría de los tumores a través del tiempo se vuelven invasivos y metastásicos y los  múltiples tratamientos usados de manera intensa, facilitan la generación de células con  resistencia a éstos. Por lo anterior, en las últimas décadas, se ha estimulado la búsqueda  de nuevas sustancias con potencial bioactivo para el desarrollo de nuevos fármacos  antineoplásicos, lo cual, ha revelado que los organismos marinos,  principalmente las esponjas, ofrecen una gama amplia de compuestos con diferentes actividades, incluyendo la antiproliferativa, útiles en el desarrollo de drogas antitumorales. En la producción farmacéutica sostenible, es requisito producir gran cantidad de biomasa y evitar la sobreexplotación de las especies utilizadas, por esa razón, se requieren estrategias que permitan la producción in vitro de los metabolitos de interés. En esta revisión, se   muestran los principales intentos de producción biotecnológica utilizados en el desarrollo de fármacos provenientes de esponjas marinas y se revisan los estudios genéticos, moleculares y de ciclo celular, encontrados en la literatura científica.

Cancer is a disease with extensive worldwide incidence. Most tumors become invasive and metastatic over time; and additionally, the development of drug resistance of the cells due to the multiple forms of treatment is used intensively. Therefore, in recent decades, search for new bioactive substances with potential for development of new anticancer drugs has been stimulated. This pursuit has revealed that marine organisms, mainly sponges, offer a wide range of compounds with dierent activities, including anti-proliferative potential, useful in the development of antitumor drugs. In sustainable pharmaceutical production is required to produce large amount of biomass and avoid overexploitation of the species used. Thereby, strategies for in vitro production of interest metabolites are required. In this review, the major attempts of biotechnological production used in drug development from marine sponges and genetic, molecular and cell cycle found in the scientic literature are shown.

Referencias

Anderson, H. J.; Coleman, J. E.; Andersen, R. J. & Roberge, M. (1997), Cytotoxic peptides hemiasterlin, hemiasterlin A and hemiasterlin B induce mitotic arrest and abnormal spindle formation. Cancer Chemother. Pharmacol. 39, 223-226.

Angerhofer, C. K.; Pezzuto, J. M.; Konig, G. M.; Wright, A. D. & Sticher, O. (1992), Antimalarial activity of sesquiterpenes from the marine sponge Acanthella klethra. Journal of Natural Products, 55 (12), 1787-1789.

Aoki, S.; Yoshioka, Y.; Miyamoto, Y.; Higuchi, K.; Setiawan, A.; Murakami, N.; Chen, Z. S.; Sumizawa, T.; Akiyama, S. & Kobayashi, M. (1998), Agosterol A, a novel Polyhydroxylated sterol acetate reversing multidrug resistance from a marine sponge of Spongia sp. Tetrahedron

Lett., 39, 6303-6306.

Bai, R.; Cichacz, Z. A.; Herald, C. L.; Pettit, G. R., & Hamel, E. (1993), Spongistatin 1, a highly cytotoxic, sponge-derived, marine natural product that inhibits mitosis, microtubule assembly, and the binding of vinblastine to tubulin. Mol. Pharmacol. 44, 757-766.

Bartmann-Lindholm, C.; Geisert, M.; Güngerich, U.; Müller, W. E. G. & Weinblum, D. (1997), Nuclear DNA fractions with grossly different base ratios in the genome of the marine sponge Geodia cydonium. J. Colloid. Polymer Sci. 107, 122-126.

BBC Research: http://www.bccresearch.com/market-research/pharmaceuticals/marine-derivedpharma-markets-phm101a.html

Becerro, M. A.; Thacker, R.W.; Turon, X.; Uriz, M. J. & Paul, V. J. (2003), Biogeography of sponge chemical ecology: comparisons of tropical and temperate defenses. Oecologia, 135, 91-101.

Belarbi, E. H.; Contreras Gómez, A.; Chisti, Y.; García Camacho, F. & Molina Grima, E. (2003), Producing drugs from marine sponges. Biotechnol. Adv. 21, 585-598.

Blackburn, C. L.; Hopmann, C.; Sakowicz, R.; Berdelis, M. S.; Goldstein, L. S. B. & Faulkner, D. J. (1999), Adociasulfates 1-6, inhibitors of kinesin motor proteins from the sponge Haliclona (aka Adocia) sp. J. Org. Chem. 64, 5565-5570.

Bubb, M. R.; Spector, I.; Bershadsky, A. D. & Korn, E. D. (1995), Swinholide A is a microlament disrupting marine toxin that stabilizes actin dimers and severs actin laments. J. Biol. Chem. 270, 3463-3466.

Cetkovic, H.; Muller, I. M.; Müller, W. E. G. & Gamulin, V. (1998), Characterization and phylogenetic analysis of a cDNA encoding theFes/FER related non-receptor protein-tyrosine kinase in the marine sponge Sycon raphanus. Gene, 216, 77-84.

Custodio, M. R.; Prokic, I.; Steffen, R.; Koziol, C.; Borojevic, R.; Brümmer, F.; Nickel, M. & Müller, W. E. G. (1998), Primmorphs generated from dissociated cells of the sponge Suberites domuncula: a model system for studies of cell proliferation and cell death. Mech Ageing Dev. 105, 45-59.

De Caralt, S.; Uriz, M. J. & Wijffels, R. H. (2007a), Cell culture from sponges: pluripotency and immortality. Trends Biotechnol. 25, 467-471.

De Caralt, S.; Otjens, H.; Uriz, M. J. & Wijffels, R. H. (2007b), Cultivation of sponge larvae: settlement, survival, and growth of juveniles. Mar. Biotechnol. 9, 592-605.

De Flora, S.; Bagnasco, M.; Bennicelli, C.; Camoirano, A.; Bojnemirski, A. & Kurelec, B. (1995), Biotransformation of genotoxic agents in marine sponges. Mechanisms and modulation. Mutagenesis, 10, 357-364.

De Guzman, F. S.; Carte, B.; Troupe, N.; Faulkner, D. J.; Harper, M. K.; Concepcion, G. P.; Mangalindan, G. C.; Matsumoto, S. S.; Barrows, L. R. & Ireland, C. M. (1999), Neoamphimedine: A new Pyridoacridine Topoisomerase II inhibitor which catenates DNA. ChemInform, 64(4), 1400-1402.

Duckworth, A. & Battershill, C. (2003), Sponge aquaculture for the production of biologically active metabolites: the influence of farming protocols and environment. Aquaculture, 221, 311-329.

Dunbar, D. C.; Rimoldi, J. M.; Clark, A. M.; Kelly, M. & Hamann, M. T. (2000), Anti-Cryptococcal and nitric oxide synthase inhibitory Imidazole alkaloids from the calcareous sponge Leucetta cf chagosensis. Tetrahedron, 56, 8795-8798.

Erickson, K. L.; Beutler, J. A.; Cardellina II, J. H. & Boyd, M. R. (1997), Salicylihalamides A and B, novel Cytotoxic Macrolides from the marine sponge Haliclona sp. J. Org. Chem. 62, 8188-8192.

Freshney, R. I. (2005), Culture of Animal Cells: A Manual of Basic Technique. 5th ed. John Wiley & Sons.

Fusetani, N.; Yasumuro, K.; Matsunaga, S. & Hashimoto, K. (1989), Mycalolides A - C, hybrid macrolides of ulapualides and halichondramide, from a sponge of the genus Mycale. Tetrahedron Lett. 30, 2809-2812.

Garson, M. J.; Flowers, A. E.; Webb, R. I.; Charan, R. D. & McCaffrey, E. J. (1998), A sponge/dino agellate association in the haplosclerid sponge Haliclona sp.: Cellular origin of cytotoxic alkaloids by Percoll density gradient fractionation. Cell Tissue Res. 293, 365-373.

Grasela, J. J.; Pomponi, S. A.; Rinkevich, B. & Grima, J. (2012), Efforts to develop a cultured sponge cell line: revisiting an intractable problem. In Vitro Cell Dev Biol Anim. 48(1), 12-20.

Hill, R. T. Manzamine-producing actinomycetes. United States Patent Application 20050244938.

Hirata, Y. & Uemura, D. (1986), Halichondrins - antitumor polyether macrolides from a marine sponge. Pure Appl. Chem. 58, 701-710.

Hood, K. A.;West, L. M.; Rouwé, B.; Northcote, P. T.; Berridge, M. V.;Wakeeld, S. J. & Miller, J. H. (2002), Peloruside A, a novel antimitotic agent with paclitaxel-like microtubule- stabilizing activity. Cancer Res. 62, 3356-3360.

Ichiba Yoshida, W. Y.; Scheuer, P. J.; Higa, T. & Gravalos, D. G. (1991), Hennoxazoles: Bioactive bisoxazoles from a marine sponge. Journal of the American Chemical Society, 113(8), 3173-3174.

Imsiecke, G.; Pascheberg, U. & Müller, W. E. G. (1993), Preparation and karyotype analysis of mitotic chromosomes of the freshwater spongeSpongilla lacustris. Chromosoma, 102, 724-727.

Imsiecke, G.; Custodio, M.; Borojevic, R.; Steffen, R.; Moustafa, M. A. & Muller, W. E. (1995), Genome size and chromosomes in marine sponges [Suberites Domuncula, Geodia Cydonium]. Cell Biol Int. 19, 995-1000.

Isbrucker, R. A.; Cummins, J.; Pomponi, S. A.; Longley, R. E. & Wright, A. E. (2003), Tubulin polymerizing activity of dictyostatin-1, a polyketide of marine sponge origin. Biochem. Pharmacol. 66, 75-82.

Ishijima J.; Iwabe N.; Masuda Y.;Watanabe Y. & Matsuda, Y. (2008), Sponge Cytogenetics-Mitotic chromosomes of ten species of freshwater sponge. Zoological Science, 25(5), 480-486.

Iwabe, N.; Kuma, K. & Miyata, T. (1996), Evolution of gene families and relationship with organismal evolution: rapid divergence of tissue-specic genes in the early evolution of chordates. Mol Biol Evol. 13, 483-493.

Juagdan, E. G.; Kalidindi, R. S.; Scheuer, P. J. & Kelly-Borges, M. (1995), Elenic acid, an inhibitor of topoisomerase 2, from a sponge, Plakinastrella sp. Tetrahedron Lett. 1, 2905-2908.

Kashman, Y.; Groweiss, A. & Shmueli, U. (1980), Latrunculin, a new 2-thiazolidinone macrolide from the marine sponge latrunculia magnica. Tetrahedron Lett. 21, 3629-3632.

Kennedy, J.; Marchesi, J. R. & Dobson, A. D. (2007), Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges. Appl Microbiol Biotechnol. 75, 11-20.

Kitagawa, I.; Kobayashi, M.; Kitanaka, K.; Kido, M. & Kyogoku, Y. (1983), Marine Natural Products. XII. On the Chemical Constituents of the Okinawan Marine Sponge Hymeniacidon aldis. Chem. Pharm. Bull. (Tokyo), 31, 2321-2328.

Kobayashi, M.; Higuchi, K.; Murakami, N.; Tajima, H.; Aoki, S. & Callystatin, A. (1997), A potent cytotoxic polyketide from the marine sponge, Callyspongia truncata. Tetrahedron Lett. 38(16), 2859-62.

Koiso, Y.; Morita, K.; Kobayashi, M.; Wang, W.; Ohyabu, N. & Iwasaki, S. (1996), Effects of arenastatin A and its synthetic analogs on microtubule assembly. Chem. Biol. Interact. 102, 183-191.

Konig, G. M. & Wright, A. D. (1996), Marine natural products research: current directions and future potential. Planta Med. 62, 193-211.

Koopmans, M.; Martens, D. & Wijffels, R. H. (2009), Towards commercial production of sponge medicines. Mar. Drugs. 7, 787-802.

Koopmans, M.; Martens, D. & Wijffels, R. H. (2010), Growth effciency and carbon balance for the sponge Haliclona oculata. Mar. Biotechnol. (NY). 12(3), 340-349.

Koziol, C.; Borojevic, R.; Steffen, R.; Muller, W. E. G. & Sponges Muller, W. E. G. (1998), Sponges (Porifera) model systems to study the shift from immortal to senescent somatic cells: the telomerase activity in somatic cells. Mech. Ageing. Develop. 100, 107-120.

Kruse, M.; Mikoc, A.; Cetkovic, H.; Gamulin, V.; Rinkevich, B.; Muller, I. M. & Müller, W. E. G. (1994), Molecular evidence for the presence of a developmental gene in the lowest animals: identication of a homeobox-like gene in the marine sponge Geodia cydonium. Mech. Ageing. Develop. 77, 43-54. http://www.sciencedirect.com.ezproxy.unal.edu.co/science/article/pii/0047637494900450

Kubanek, J.; Whalen, K. E.; Engel, S.; Kelly, S. R.; Henkel, T. P.; Fenical., W. & Pawlik, J. R. (2002), Multiple defensive roles for triterpene glycosides from two Caribbean sponges. Oecologia, 131, 125-136.

Kurelec, B.; Krca, S.; Pivcevic, B.; Ugarkovic, D.; Bachmann, M.; Imsiecke, G. & Muller, W. E. (1992), Expression of P-glycoprotein gene in marine sponges. Identication and characterization of the 125 kDa drug-binding glycoprotein. Carcinogenesis, 13, 69-76.

Lafay, B.; Boury-Esnault, N.; Vacelet, J. & Christen, R. (1992), An analysis of partial 28S ribosomal RNA sequences suggests early radiation of sponges. BioSystems, 28(1-3), 139-151.

Larroux, C.; Fahey, B.; Degnan, S. M.; Adamski, M.; Rokhsar, D. S. & Degnan, B. M. (2007), The NK homeo-box gene cluster predates the origin of box genes. Curr Biol. 17, 1-5.

Lehnert, H. & Reitner, J. (1997), Lebensdauer und Regeneration bei Ceratoporella nicholsoni (Hickson, 1911) und Spirastrella (Acanthochaetetes) wellsi (Hartman & Goreau, 1975) Geol. Bl NO-Bayern. 47, 265-272. https://e-docs.geo-leo.de/handle/11858/00-1735-0000-0001-339D-1

Lopez, S.; Fernandez-Trillo, F.; Midon, P.; Castedo, L. & Saa, C. (2005), First stereoselective syntheses of (-)-siphonodiol and (-)-tetrahydrosiphonodiol, bioactive polyacetylenes from marine sponges. J Org Chem. 70, 6346-6352.

Makino, S. (1951), An atlas of the chromosome numbers in animals, 2d ed. (1st American ed.) rev. and enl. from the original Tokyo ed. Zoology Publisher: Ames, Iowa State College Press. 290p http://www.cabdirect.org/abstracts/19520100513.html;jsessionid=A7A3ED04D91B3A89D64AB8E046ABFC9C

Maldonado, M. (1998), Do chimeric sponges have improved chances of survival? Mar Ecol Prog Ser. 164, 301-306.

Maldonado, M. & Riesgo, A. (2008), Reproductive output in a Mediterranean population of the homosclerophorid corticium candelabrum (Porifea, Demospongiae) with notes on the ultrastructure and behavior of the larva. Marine Ecology, 29, 298-316.

Manconi, R. & Pronzato, R. (2007), Gemmules as a key structure for the adaptive radiation of freshwater sponges: a morphofunctional and biogeographical study. Porifera Research: Biodiversity, Innovation and Sustainability, 61-77.

Miller-Harley (2001), Zoology, Fifth Edition. II. Animal-Like Protists and Animalia. 18. The Fishes: Vertebrate Success in Water. The McGraw-Hill Companies. 401-422.

Mirsky, A. E. & Ris, H. (1951), The deoxyribonucleic acid content of animal cells and its evolutionary signicance. J. Gen. Physiol. 34, 451-462.

Mooberry, S. L.; Tien, G.; Hernandez, A. H.; Plubrukarn, A. & Davidson, B. S. (1999), Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res. 59, 653-660.

Müller, W. E.; Dorn, A. & Uhlenbruck, G. (1985), The molecular mechanisms of the distinct calcium-dependent aggregation systems in marine sponges and corals. Acta Histochem Suppl. 31, 37-46.

Müller, W. E. G.; Kruse, M.; Koziol, C. & Leys, S. P.(1998), Evolution of early Metazoa: Phylogenetic status of the Hexactinellida within the phylum of Porifera [sponges]. Progr. Mol. Subcell. Biol. 21, 141-156.

Müller, W. E.; Dorn, A. & Uhlenbruck, G. (1985), The molecular mechanisms of the distinct calcium-dependent aggregation systems in marine sponges and corals. Acta Histochem Suppl. 31, 37-46.

Müller, W. E. G.; Muller, I. M.; Rinkevich, B. & Gamulin, V. (1995), Molecular evolution: Evidence for the monophyletic origin of multicellular animals. Naturwiss, 82, 36-38.

Osinga, R. (2003). Biotechnological aspects of marine sponges. J. Biotechnol. 100, 91-92.

Osinga, R.; Tramper, J. & Wijffels, R. H. (1999), Cultivation of marine sponges. Mar Biotechnol. 1, 509-532.

Ottilie, S.; Raulf, F.; Barnekow, A.; Hannig, G. & Schartl, M. (1992), Multiple src-related genes, srk1-4, in the fresh water sponge Spon gilla lacustris. Oncogene, 7, 1625-1630.

Patthy, L. (2003), Modular assembly of genes and the evolution of new functions. Genetica, 118, 217-231.

Pérez-López, P.; Ternon, E.; González-García, S.; Genta-Jouve, G.; Feijoo, G.; Thomas, O. P. & Moreira, M. T. (2014), Environmental solutions for the sustainable production of bioactive natural products from the marine sponge Crambe crambe. Sci. Total Environ. 475, 71-82.

Perry, P. & Wolff, S. (1974), New Giemsa method for the differential staining of sister chromatids. Nature, 251, 156-8.

Pfeifer, K.; Haasemann, M.; Gamulin, V.; Bretting, H.; Fahrenholz, F. & Muller, W. E. G. (1993), Stype lectins occur also in invertebrates: high conservation of the carbohydrate recognition domain in the lectin genes from the marine sponge Geodia cydonium. Glycobiol. 3, 179-184.

Pomponi, S. A. & Willoughby, R. (1994), Sponge cell culture for the production of bioactive metabolites; van Soest, R., van Kempen, T.M.G., Braekman, J.C., Eds.; Balkema: Rotterdam, The Netherlands. 395-400.

Porifarma: The marine Biotech company. http://porifarma.com/

Proksch, P. (1994), Defensive roles for secondary metabolites from marine sponges and spongefeeding nudibranchs. Toxicon. 32, 639-655.

Rodrigo, A. G; Bergquist, P. R.; Bergquist, P. L. & Reeves, R. A. (1994), Are sponges animals? An investigation into the vagaries of phylogenetic interference. In: Sponges in Time and Space, R.W.M. v. Soest, T.M.G. v.

Saito, S., Watabe, S., Ozaki, H., Fusetani, N., and Karaki, H. (1994), Mycalolide B, a novel actin depolymerizing agent. J. Biol. Chem. 269, 29710-29714.

Schäcke, H.; Schröder, H. C.; Gamulin, V.; Rinkevich, B.; Müller, I. M. & Müller, W. E. G. (1994), Molecular cloning of a tyrosine kinase gene from the marine sponge Geodia cydonium: a new member belonging to the receptor tyrosine kinase class II family. Mol.Memb. Biol. 11, 101-107.

Schippers, K. J.; Martens, D. E.; Pomponi, S. A. & Wijffels, R. H. (2011), Cell cycle analysis of primary sponge cell cultures. Vitro Cell. Dev. Biol. - Anim. 47, 302-311.

Sipkema, D.; van Wielink, R.; van Lammeren, A. A. M.; Tramper, J.; Osinga, R. & Wijffels, R. H. (2003), Primmorphs from seven marine sponges: formation and structure. J Biotechnol. 100, 127-139.

Sipkema, D.; Franssen, M. C.; Osinga, R.; Tramper, J. & Wijffels, R. H. (2005a), Marine sponges as pharmacy. Mar Biotechnol NY. 7, 142-162.

Sipkema, D.; Osinga, R.; Schatton, W.; Mendola, D.; Tramper, J. & Wijffels, R. H. (2005b), Largescale production of pharmaceuticals by marine sponges: sea, cell, or synthesis? Biotechnol Bioeng. 90, 201-222.

Ter Haar, E;, Kowalski, R. J.; Hamel, E.; Lin, C. M.; Longley, R. E.; Gunasekera, S. P.; Rosenkranz, H. S. & Day, B. W. (1996), Discodermolide, A cytotoxic marine agent that stabilizes microtubules more potently than taxol. Biochemistry (Mosc.) 35, 243-250.

Thompson, J. D.; Gibson, T. J.; Plewniak, F.; Jeanmougin, F. & Higgins, D. G. (1997), The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882.

Thoms, C. & Schupp, P. J. (2008), Activated chemical defense in marine sponges--a case study on Aplysinella rhax. J. Chem Ecol. 34, 1242-1252.

Uriz, M. J.; Turon, X.; Galera, J.; Tur, J. M. (1996), New light on the cell location of avarol within the sponge Dysidea avara (Dendroceratida). Cell Tissue Res. 285, 519-527.

Wagner, C.; Stefen, R.; Koziol, C.; Batel, R.; Lacorn, M.; Steinhart, H.; Simat, T. & Muller, W. E. G. (1998), Apoptosis in marine sponges: a biomarker for environmental stress (cadmium and bacteria). Marine Biology, 131, 411-421.

Wakimoto, T.; Maruyama, A.; Matsunaga, S. & Fusetani Katsumi, N. (1999), Octa-and nonaprenylhydroquinone sulfates, inhibitors of [alpha] 1, 3-fucosyltransferase VII, from an Australian marine sponge Sarcotragus sp. Bioorg. Med. Chem. Lett. 9, 727-730.

Wiens, M.; Korzhev, M.; Krasko, A.; Thakur, N. L.; Perovic-Ottstadt, S.; Breter, H. J.; Ushijima, H.; Diehl-Seifert, B.; Müller, I. M. & Müller, W. E. G. (2005), Innate immune defense of the sponge Suberites domuncula against bacteria involves a MyD88-dependent signaling pathway induction of a perforin-like molecule. J. Biol. Chem. 280, 27949-27959.

Wijffels, R. H. (2008), Potential of sponges and microalgae for marine biotechnology. Trends Biotechnol. 26, 26-31.

World Porifera Data Base. http://www.marinespecies.org/porifera/

Cómo citar

APA

Blandón, L., Estrada, N., López, J. y Márquez, M. (2014). Esponjas marinas: ¿producción biotecnológica sostenible?. Revista de la Facultad de Ciencias, 3(2), 11–29. https://revistas.unal.edu.co/index.php/rfc/article/view/50740

ACM

[1]
Blandón, L., Estrada, N., López, J. y Márquez, M. 2014. Esponjas marinas: ¿producción biotecnológica sostenible?. Revista de la Facultad de Ciencias. 3, 2 (jul. 2014), 11–29.

ACS

(1)
Blandón, L.; Estrada, N.; López, J.; Márquez, M. Esponjas marinas: ¿producción biotecnológica sostenible?. Rev. Fac. Cienc. 2014, 3, 11-29.

ABNT

BLANDÓN, L.; ESTRADA, N.; LÓPEZ, J.; MÁRQUEZ, M. Esponjas marinas: ¿producción biotecnológica sostenible?. Revista de la Facultad de Ciencias, [S. l.], v. 3, n. 2, p. 11–29, 2014. Disponível em: https://revistas.unal.edu.co/index.php/rfc/article/view/50740. Acesso em: 28 mar. 2024.

Chicago

Blandón, Lina, Natalia Estrada, Juan López, y María Márquez. 2014. «Esponjas marinas: ¿producción biotecnológica sostenible?». Revista De La Facultad De Ciencias 3 (2):11-29. https://revistas.unal.edu.co/index.php/rfc/article/view/50740.

Harvard

Blandón, L., Estrada, N., López, J. y Márquez, M. (2014) «Esponjas marinas: ¿producción biotecnológica sostenible?», Revista de la Facultad de Ciencias, 3(2), pp. 11–29. Disponible en: https://revistas.unal.edu.co/index.php/rfc/article/view/50740 (Accedido: 28 marzo 2024).

IEEE

[1]
L. Blandón, N. Estrada, J. López, y M. Márquez, «Esponjas marinas: ¿producción biotecnológica sostenible?», Rev. Fac. Cienc., vol. 3, n.º 2, pp. 11–29, jul. 2014.

MLA

Blandón, L., N. Estrada, J. López, y M. Márquez. «Esponjas marinas: ¿producción biotecnológica sostenible?». Revista de la Facultad de Ciencias, vol. 3, n.º 2, julio de 2014, pp. 11-29, https://revistas.unal.edu.co/index.php/rfc/article/view/50740.

Turabian

Blandón, Lina, Natalia Estrada, Juan López, y María Márquez. «Esponjas marinas: ¿producción biotecnológica sostenible?». Revista de la Facultad de Ciencias 3, no. 2 (julio 1, 2014): 11–29. Accedido marzo 28, 2024. https://revistas.unal.edu.co/index.php/rfc/article/view/50740.

Vancouver

1.
Blandón L, Estrada N, López J, Márquez M. Esponjas marinas: ¿producción biotecnológica sostenible?. Rev. Fac. Cienc. [Internet]. 1 de julio de 2014 [citado 28 de marzo de 2024];3(2):11-29. Disponible en: https://revistas.unal.edu.co/index.php/rfc/article/view/50740

Descargar cita

Visitas a la página del resumen del artículo

1869

Descargas

Los datos de descargas todavía no están disponibles.