Microorganismos marinos extremófilos con potencial en bioprospección
Marine extremophile microorganisms with potential in bioprospecting studies
DOI:
https://doi.org/10.15446/rev.fac.cienc.v7n2.67360Palabras clave:
Actividad biológica, ambientes extremos, productos naturales marinos (es)Descargas
El interés por estudiar los ambientes marinos extremos ha ido creciendo en las últimas dos décadas, motivado principalmente por la búsqueda de microorganismos productores de metabolitos con fines biotecnológicos. En esta revisión se presentan las fuentes de aislamiento de microorganismos extremófilos en ambientes marinos y costeros alrededor del mundo y las moléculas aisladas de estos que han mostrado una apreciable importancia biotecnológica, con el fin de reportar la disponibilidad de nichos ambientales con potencial en bioprospección y así favorecer su aprovechamiento. Las investigaciones más representativas incluyen los piezófilos, halófilos, psicrófilos y termófilos, grupos en los que se han identificado nuevas especies y obtenido compuestos con actividad biológica.
Referencias
Abdel-Mageed, W. M.; Milne, B. F.; Wagner, M.; Schumacher, M.; Sandor, P.; Pathom-aree, P.; Goodfellow, M.; Bull, A. T.; Horikoshi, K.; Ebel, R.; Diederich, M.; Fiedler, H.-P.; Jaspars, M. (2010), Dermacozines, a new phenazine family from deep-sea dermacocci isolated from a Mariana Trench sediment. Organic & Biomolecular Chemistry, 8(10): 2352-2362. http://dx.doi.org/10.1039/c001445a
Abe, F. & Horikoshi, K. (2001), The biotechnological potential of piezophiles. Trends in biotechnology. 19(3): 102–108. https://doi.org/10.1016/S0167-7799(00)01539-0.
Andrianasolo, E. H.; Haramaty, L.; Rosario-Passapera, R.; Bidle, K.; White, E.; Vetriani, C.; Falkowski, P.; Lutz, R. (2009), Ammonificins A and B, Hydroxyethylamine Chroman Derivatives from a Cultured Marine Hydrothermal Vent Bacterium, Thermovibrio ammonificans. Journal of Natural Products, 72(6): 1216-1219. http://dx.doi.org/10.1021/np800726d
Andrianasolo, E. H.; Haramaty, L.; Rosario-Passapera, R.; Vetriani, C.; Falkowski, P.; White, E.; Lutz, R. (2012), Ammonificins C and D, Hydroxyethylamine Chromene Derivatives from a Cultured Marine Hydrothermal Vent Bacterium, Thermovibrio ammonificans. Mar. Drugs. 10(10): 2300-2311. http://dx.doi.org/10.3390/md10102300
Arena, A.; Gugliandolo, C.; Stassi, G.; Pavone, B.; Iannello, D.; Bisignano, G.; Maugeri, T. L. (2009), An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72: Antiviral activity on immunocompetent cells. Immunology Letters, 123(2): 132-137. http://dx.doi.org/10.1016/j.imlet.2009.03.001
Arena, A.; Maugeri, T. L.; Pavone, B.; Iannello, D.; Gugliandolo, C.; Bisignano, G. (2006), Antiviral and immunoregulatory effect of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis. International Immunopharmacology, 6(1): 8-13. https://doi.org/10.1016/j.intimp.2005.07.004
Atomi, H. (2005), Recent progress towards the application of hyperthermophiles and their enzymes. Current Opinion in Chemical Biology, 9(2): 166-173. https://doi.org/10.1016/j.cbpa.2005.05.013
Ballav, S.; Kerkar, S.; Thomas.; S.; Augustine, N. (2015), Halophilic and halotolerant actinomycetes from a marine saltern of Goa, India producing anti-bacterial metabolites. Journal of Bioscience and Bioengineering, 119(3): 323-330. https://doi.org/10.1016/j.jbiosc.2014.08.017
Batista-García, R. A.; Sutton, T.; Jackson, S. A.; Tovar-Herrera, O. E.; Balcázar-López, E.; Sánchez-Carbente, M. del R.; Sánchez-Reyes, A.; Dobson, A. D. W.; Folch-Mallol, J. L. (2017), Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani. PLOS ONE, 12(3): e0173750.
https://doi.org/10.1016/10.1371/journal.pone.0173750
Beeler, E. & Singh, O. V. (2016), Extremophiles as sources of inorganic bio-nanoparticles. World Journal of Microbiology and Biotechnology. 32(9): 156. https://doi.org/10.1007/s11274-016-2111-7
Berezovsky, I. N.; Zeldovich, K. B.; Shakhnovich, E. I.; (2007), Positive and Negative Design in Stability and Thermal Adaptation of Natural Proteins. PLOS Computational Biology, 3(3): e52. https://doi.org/10.1371/journal.pcbi.0030052
Bonugli-Santos, R. C.; dos Santos Vasconcelos, M. R.; Passarini, M. R. Z.; Vieira, G. A. L.; Lopes, V. C. P.; Mainardi, P. H.; dos Santos, J. A.; de Azevedo Duarte, L.; Otero, I. V. R.; da Silva Yoshida, A. M.; Feitosa, V. A.; Pessoa, A.; Sette, L. D. (2015), Marine-derived fungi: diversity of enzymes and biotechnological applications. Frontiers in Microbiology, 6; 269. https://doi.org/10.3389/fmicb.2015.00269
Borchert, E.; Knobloch, S.; Dwyer, E.; Flynn, S.; Jackson, S. A.; Jóhannsson, R.; Marteinsson, V. T.; O’Gara, F.; Dobson, A. D. W. (2017), Biotechnological Potential of Cold Adapted Pseudoalteromonas spp. Isolated from ‘Deep Sea’ Sponges. Mar. Drugs. 15(6): 184. https://doi.org/10.3390/md15060184
Bowman, J. P. (2008), Genomic Analysis of Psychrophilic Prokaryotes. In: Psychrophiles: from Biodiversity to Biotechnology. Margesin, R.; Schinner, F.; Marx, J. C.; Gerday, C. eds. Springer, Berlin, Heidelberg. pp: 265-284. https://doi.org/10.1007/978-3-540-74335-4_16
Brakstad, O. G. (2008), Natural and Stimulated Biodegradation of Petroleum in Cold Marine Environments. In: Psychrophiles: from Biodiversity to Biotechnology. Margesin, R.; Schinner, F.; Marx, J. C.; Gerday, C. eds. Springer, Berlin, Heidelberg. pp: 389-407. https://link.springer.com/chapter/10.1007%2F978-3-540-74335-4_23
Coker, J. A. (2016), Extremophiles and biotechnology: current uses and prospects. F1000Research. 5 (F1000 Faculty Rev): 396. https://doi.org/10.12688/f1000research.7432.1
Collins, T.; Roulling, F.; Piette, F.; Marx, J.-C.; Feller, G.; Gerday, C.; D'Amico, S. (2008), Fundamentals of Cold-Adapted Enzymes. In: Psychrophiles: from Biodiversity to Biotechnology. Margesin, R.; Schinner, F.; Marx, J. C.; Gerday, C. eds. Springer, Berlin, Heidelberg. pp: 211-227. https://link.springer.com/chapter/10.1007/978-3-540-74335-4_13
Chakravorty, D. & Patra, S. (2012), Attaining Extremophiles and Extremolytes: Methodologies and Limitations. In: Extremophiles: Sustainable Resources and Biotechnological Implications. Singh, O. V. eds. John Wiley & Sons, Inc. NJ, USA. pp: 29-74. https://doi.org/10.1002/9781118394144.ch2
Chakraborty, S.; Khopade, A.; Kokare, C.; Mahadik, K.; Chopade, B. (2009), Isolation and characterization of novel α-amylase from marine Streptomyces sp. D1. Journal of Molecular Catalysis B: Enzymatic, 58(1): 17-23. https://doi.org/10.1016/j.molcatb.2008.10.011
Cvetkovska, M.; Hüner, N. P. A.; Smith, D. R. (2017), Chilling out: the evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales. Polar Biology. 40(6): 1169-1184. https://doi.org/10.1007/s00300-016-2045-4
Dalmaso, G.; Ferreira, D.; Vermelho, A. (2015), Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications. Mar. Drugs. 13 (4): 1925-1965. https://doi.org/10.3390/md13041925
Dhakal, D.; Pokhrel, A. R.; Shrestha, B.; Sohng, J. K. (2017), Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds. Front. Microbiol. 8: 1106. https://doi.org/10.3389/fmicb.2017.01106
Del-Cid, A.; Ubilla, P.; Ravanal, M.-C.; Medina, E.; Vaca, I.; Levicán, G.; Eyzaguirre, J.; Chávez.; R. (2014), Cold-active xylanase produced by fungi associated with Antarctic marine sponges. Applied Biochemistry and Biotechnology, 172(1): 524-532. https://doi.org/10.1007/s12010-013-0551-1
Di Lorenzo, F.; Palmigiano, A.; Paciello, I.; Pallach, M.; Garozzo, D.; Bernardini, M.-L.; Cono, V. L. Yakimov, M. M.; Molinaro, A.; Silipo, A. (2017), The Deep-Sea Polyextremophile Halobacteroides lacunaris TB21 Rough-Type LPS: Structure and Inhibitory Activity towards Toxic LPS. Mar. Drugs. 15(7): 201. https://doi.org/10.3390/md15070201
Dickinson, I.; Goodall-Copestake, W.; Thorne, M. A. S.; Schlitt, T.; Ávila-Jiménez, M. L.; Pearce, D. A. (2016), Extremophiles in an Antarctic Marine Ecosystem. Microorganisms. 4(1): 8. https://doi.org/10.3390/microorganisms4010008
Donot, F.; Fontana, A.; Baccou, J. C.; Schorr-Galindo, S. (2012), Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydrate Polymers, 87(2): 951-962. https://doi.org/10.1016/j.carbpol.2011.08.083
Du, L.; Li, D.: Zhu, T.; Cai, S.; Wang, F.; Xiao, X.; Gu, Q. (2009), New alkaloids and diterpenes from a deep ocean sediment derived fungus Penicillium sp. Tetrahedron, 65(5): 1033-1039. https://doi.org/10.1016/j.tet.2008.11.078
Elleuche, S.; Schäfers, C.; Blank, S.; Schröder, C.; Antranikian, G. (2015), Exploration of extremophiles for high temperature biotechnological processes. Current Opinion in Microbiology. 25: 113-119. https://doi.org/10.1016/j.mib.2015.05.011
Fang, J.; Zhang, L.; Bazylinski, D.A. (2010), Deep-sea piezosphere and piezophiles: Geomicrobiology and biogeochemistry. Trends. Microbiol. 18: 413–422. https://doi.org/10.1016/j.tim.2010.06.006
Fernández, L.; Louvado, A.; Esteves, V. I.; Gomes, N. C. M.; Almeida, A.; Cunha, Â. (2017), Biodegradation of 17β-estradiol by bacteria isolated from deep sea sediments in aerobic and anaerobic media. Journal of Hazardous Materials, Special Issue on Emerging Contaminants in engineered and natural environment, 323: 359-366. https://doi.org/10.1016/j.jhazmat.2016.05.029
Finore, I.; Di Donato, P.; Mastascusa, V.; Nicolaus, B.; Poli, A. (2014), Fermentation Technologies for the Optimization of Marine Microbial Exopolysaccharide Production. Mar. Drugs. 12(5): 3005-3024. https://doi.org/10.3390/md12053005
Fulzele, R.; DeSa, E.; Yadav, A.; Shouche, Y.; Bhadekar, R. (2011), Characterization of novel extracellular protease produced by marine bacterial isolate from the Indian Ocean. Brazilian Journal of Microbiology, 42(4): 1364-1373. https://doi.org/10.1590/S1517-838220110004000018
Flores, P. A., Amenábar, M. J.; Blamey, J. M. (2013), Hot Environments from Antarctica: Source of Thermophiles and Hyperthermophiles, with Potential Biotechnological Applications. In: Satyanarayana T.; Littlechild J.; Kawarabayasi Y.; (eds) Thermophilic Microbes in Environmental and Industrial Biotechnology. Springer, Dordrecht, 99-118p. https://link.springer.com/chapter/10.1007%2F978-94-007-5899-5_3
Frisvad, J. C. (2008), Cold-Adapted Fungi as a Source for Valuable Metabolites. In: Psychrophiles: from Biodiversity to Biotechnology. Margesin, R.; Schinner, F.; Marx, J. C.; Gerday, C. eds. Springer, Berlin, Heidelberg. pp 381-387. https://link.springer.com/chapter/10.1007%2F978-3-540-74335-4_22
Gärtner, A.; Ohlendorf, B.; Schulz, D.; Zinecker, H.; Wiese, J.; Imhoff, J. F. (2011), Levantilides A and B, 20-Membered Macrolides from a Micromonospora Strain Isolated from the Mediterranean Deep Sea Sediment. Mar. Drugs. 9(1): 98-108. https://doi.org/10.3390/md9010098.
Garcia-Descalzo, L.; Alcazar, A.; Baquero, F.; Cid, C. (2012), Biotechnological Applications of Cold-Adapted Bacteria. In: Extremophiles: Sustainable Resources and Biotechnological Implications. Singh, O. V. eds. John Wiley & Sons, Inc. NJ, USA. pp: 159-174. https://doi.org/10.1002/9781118394144.ch6
Giddings, L.-A.; & Newman, D. J. (2015), Bioactive Compounds from Marine Extremophiles. In: Bioactive Compounds from Marine Extremophiles. SpringerBriefs in Microbiology. Springer, Cham. pp 1-124. https://link.springer.com/book/10.1007%2F978-3-319-14361-3
Gómez, J.A. (2008), Caracterización cinética y enzimática de Thermoanaerobacter italicus cepa USBA 18 aislada de un manantial termomineral en Paipa, Boyacá. Tesis para optar título de Microbiólogo Industrial, Pontificia Universidad Javeriana. Bogotá D.C., Colombia. 128 p. https://repository.javeriana.edu.co/handle/10554/8399.
Gonçalves, L. G.; Borges, N.; Serra, F.; Fernandes, P. L; Dopazo, H.; Santos, H. (2012), Evolution of the biosynthesis of di-myo-inositol phosphate, a marker of adaptation to hot marine environments. Environmental Microbiology, 14(3): 691-701. https://doi.org/10.1111/j.1462-2920.2011.02621.x
Gonthier, I.; Rager, M.-N.; Metzger, P.; Guezennec, J.; Largeau, C. (2001), A di-O-dihydrogeranylgeranyl glycerol from Thermococcus S 557, a novel ether lipid, and likely intermediate in the biosynthesis of diethers in Archæa. Tetrahedron Letters, 42(15): 2795-2797. https://doi.org/10.1016/S0040-4039(01)00305-7
Guo, W.; Zhang, Z.; Zhu, T.; Gu, Q.; Li, D. (2015), Penicyclones A-E, Antibacterial Polyketides from the Deep-Sea-Derived Fungus Penicillium sp. F23-2. Journal of Natural Products, 78(11): 2699-2703. https://doi.org/10.1021/acs.jnatprod.5b00655
Hohmann, C.; Schneider, K.; Bruntner, C.; Irran, E.; Nicholson, G.; Bull, A.T.; Jones, A. L.; Brown, R.; Stach, J. E. M.; Goodfellow, M.; Beil, W.; Krämer, M.; Imhoff, J. F.; Süssmuth, R. D.; Fiedler, H.-P. (2009), Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. The Journal of Antibiotics, 62(2): 99-104. https://doi.org/10.1038/ja.2008.24
Homaei, A.; Lavajoo, F.; Sariri, R. (2016), Development of marine biotechnology as a resource for novel proteases and their role in modern biotechnology. International Journal of Biological Macromolecules, 88: 542-552. https://doi.org/10.1016/j.ijbiomac.2016.04.023.
Huang, H.; Yang, T.; Ren, X.; Liu, J.; Song, Y.; Sun, A.; Ma, J.; Wang, B.; Zhang, Y.; Huang, C.; Zhang, C.; Ju, J. (2012), Cytotoxic Angucycline Class Glycosides from the Deep Sea Actinomycete Streptomyces lusitanus SCSIO LR32. Journal of Natural Products, 75(2): 202-208. https://doi.org/10.1021/np2008335.
Huang, H.; Yao, Y.; He, Z.; Yang, T.; Ma, J.; Tian, X.; Li, Y.; Huang, C.; Chen, X.; Li, W.; Zhang, S.; Zhang, C.; Ju, J. (2011), Antimalarial β-Carboline and Indolactam Alkaloids from Marinactinospora thermotolerans, a Deep Sea Isolate. Journal of Natural Products, 74(10): 2122-2127. https://doi.org/10.1021/np200399t.
Hussein, A. H.; Lisowska, B. K.; Leak, D. J. (2015), The Genus Geobacillus and Their Biotechnological Potential. Advances in Applied Microbiology, 92: 1-48. https://doi.org/10.1016/bs.aambs.2015.03.001.
Huston, A. L. (2008). Biotechnological Aspects of Cold-Adapted Enzymes. In: Psychrophiles: from Biodiversity to Biotechnology. Margesin, R.; Schinner, F.; Marx, J. C.; Gerday, C. eds. Springer, Berlin, Heidelberg. pp 347-363. https://link.springer.com/chapter/10.1007/978-3-540-74335-4_20.
Ibrahim, A. S. S.; Al-Salamah, A. A.; Elbadawi, Y. B.; El-Tayeb, M. A.; Ibrahim, S. S. S. (2015), Production of extracellular alkaline protease by new halotolerant alkaliphilic Bacillus sp. NPST-AK15 isolated from hyper saline soda lakes. Electronic Journal of Biotechnology, 18(3): 236-243. https://doi.org/10.1016/j.ejbt.2015.04.001.
Imhoff, J. F. (2016), Natural Products from Marine Fungi—Still an Underrepresented Resource. Mar. Drugs. 14(1): 19. https://doi.org/10.3390/md14010019.
Jenifer, J. S. C. A.; Donio, M. B. S.; Michaelbabu, M.; Vincent, S. G. P.; Citarasu, T. (2015), Haloalkaliphilic Streptomyces spp. AJ8 isolated from solar salt works and its’ pharmacological potential. AMB Express, 5: 59. https://doi.org/10.1186/s13568-015-0143-2.
Jiang, L.; Xu, H.; Zeng, X.; Wu, X.; Long, M.; Shao, Z. (2015), Thermophilic hydrogen-producing bacteria inhabiting deep-sea hydrothermal environments represented by Caloranaerobacter. Research in Microbiology, 166(9): 677-687. https://doi.org/10.1016/j.resmic.2015.05.002.
Jiasheng, W.; Wang, Y.; Li, Q. (2007), Potential contributions of extremophiles to hydrocarbon resources in marine extreme environments: A review. Frontiers of Earth Science in China, 1(4): 444-451. https://link.springer.com/article/10.1007/s11707-007-0055-9.
Kambourova M.; Radchenkova N.; Tomova I.; Bojadjieva I. (2016), Thermophiles as a Promising Source of Exopolysaccharides with Interesting Properties. In: Rampelotto P. (eds) Biotechnology of Extremophiles: Grand Challenges in Biology and Biotechnology, Springer, Cham. 117-139p. https://doi.org/10.1007/978-3-319-13521-2_4.
Kamjam, M.; Sivalingam, P.; Deng, Z.; Hong, K. (2017), Deep Sea Actinomycetes and Their Secondary Metabolites. Front. Microbiol. 8: 760. https://doi.org/10.3389/fmicb.2017.00760.
Kenney, J. P. L. & Fein, J. B. (2011), Cell Wall Reactivity of Acidophilic and Alkaliphilic Bacteria Determined by Potentiometric Titrations and Cd Adsorption Experiments. Environmental Science & Technology, 45(10): 4446-4452. https://doi.org/10.1021/es200191u.
Kodzius, R. & Gojobori, T. (2015), Marine Metagenomics as a Source for Bioprospecting. Marine Genomics. 24: 21-30. https://doi.org/10.1016/j.margen.2015.07.001.
Krembs, C. & Deming, J. W. (2008), The Role of Exopolymers in Microbial Adaptation to Sea Ice. In: Psychrophiles: from Biodiversity to Biotechnology. Margesin, R.; Schinner, F.; Marx, J. C.; Gerday, C. eds. Springer, Berlin, Heidelberg. pp: 247-264. https://link.springer.com/chapter/10.1007/978-3-540-74335-4_15.
Lamosa, P.; Gonçalves, L. G.; Rodrigues, M. V.; Martins, L. O; Raven, N. D. H.; Santos, H. (2006), Occurrence of 1-Glyceryl-1-myo-Inosityl Phosphate in Hyperthermophiles. Applied and Environmental Microbiology, 72(9): 6169-6173. https://doi.org/10.1128/AEM.00852-06.
Lentini, V.; Gugliandolo, C.; Maugeri, T. L. (2007), Identification of enzyme-producing thermophilic bacilli isolated from marine vents of Aeolian Islands (Italy). Annals of Microbiology, 57(3): 355-361. https://link.springer.com/article/10.1007/BF03175073.
Li, D.-H.; Cai, S.-X.; Zhu, T.-J.; Wang, F.-P.; Xiao, X.; Gu, Q.-Q. (2011), New Cytotoxic Metabolites from a Deep-Sea-Derived Fungus, Phialocephala sp., Strain FL30r. Chemistry & Biodiversity. 8(5): 895-901. https://doi.org/10.1002/cbdv.201000134.
Li, D.; Wang, F.; Cai, S.; Zeng, X.; Xiao, X.; Gu, Q.; Zhu, W. (2007), Two New Bisorbicillinoids Isolated from a Deep-sea Fungus, Phialocephala sp. FL30r. The Journal of Antibiotics. 60(5): 317-320. https://doi.org/10.1038/ja.2007.40.
Li, S.; Tian, X.; Niu, S.; Zhang, W.; Chen, Y.; Zhang, H.; Yang, X.; Zhang, W.; Li, W.; Zhang, W.; Ju, J.; Zhang, C. (2011), Pseudonocardians A–C, New Diazaanthraquinone Derivatives from a Deap-Sea Actinomycete Pseudonocardia sp. SCSIO 01299. Mar. Drugs. 9(8): 1428-1439. https://doi.org/10.3390/md9081428.
Li, Y.; Xu, Y.; Liu, L.; Han, Z.; Lai, P. Y.; Guo, X.; Zhang, X.; Lin, W.; Qian, P.-Y. (2012), Five New Amicoumacins Isolated from a Marine-Derived Bacterium Bacillus subtilis. Mar.Drugs. 10(2): 319-328. https://doi.org/10.3390/md10020319.
Li, Y.; Ye, D.; Shao, Z.; Cui, C.; Che, Y. (2012), A Sterol and Spiroditerpenoids from a Penicillium sp. Isolated from a Deep Sea Sediment Sample, Mar. Drugs. 10(2): 497-508. https://doi.org/10.3390/md10020497.
Li, L.; Yang, J.; Li, J.; Long, L.; Xiao, Y.; Tian, X.; Wang, F.; Zhang, S. (2015), Role of two amino acid residues’ insertion on thermal stability of thermophilic α-amylase AMY121 from a deep sea bacterium Bacillus sp. SCSIO 15121. Bioprocess. Biosyst. Eng, 38: 871. https://doi.org/10.1007/s00449-014-1330-2.
Liu, D.; Lin, H.; Proksch, P.; Tang, X.; Shao, Z.; Lin, W. (2015), Microbacterins A and B, New Peptaibols from the Deep Sea Actinomycete Microbacterium sediminis sp. nov. YLB-01(T). Organic Letters, 17(5): 1220-1223. https://doi.org/10.1021/acs.orglett.5b00172.
Liu, N.; Shang, F.; Xi, L.; Huang, Y. (2013), Tetroazolemycins A and B, Two New Oxazole-Thiazole Siderophores from Deep-Sea Streptomyces olivaceus FXJ8.012. Mar. Drugs. 11(5): 1524-1533. https://doi.org/10.3390/md11051524.
Liang, R.; Grizzle, R. S.; Duncan, K. E.; McInerney, M. J.; Suflita, J. M. (2014), Roles of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the biocorrosion of oil pipelines. Front. Microbiol. 5: 89. https://doi.org/10.3389/fmicb.2014.00089.
Ma, Y.; Galinski, E. A.; Grant, W. D.; Oren, A.; Ventosa, A. (2010), Halophiles 2010: Life in Saline Environments. Applied and Environmental Microbiology, 76(21): 6971–6981. https://doi.org/10.1128/AEM.01868-10.
Maier, R. M. and Neilson, J. W. (2015), Chapter 7 - Extreme Environments. In: Environmental Microbiology (Third edition). Academic Press. San Diego. 139-153p. https://doi.org/10.1016/B978-0-12-394626-3.00007-7.
Mandelli, F.; Couger, M. B.; Paixão, D. a. A; Machado, C. B.; Carnielli, C. M.; Aricetti, J. A.; Polikarpov, I.; Prade, R.; Caldana, C.; Leme, A. F. P.; Mercadante, A. Z.; Riaño-Pachón, D. M.; Squina, F. M. (2017), Thermal adaptation strategies of the extremophile bacterium Thermus filiformis based on multi-omics analysis. Extremophiles. 21(4): 775-788. https://doi.org/10.1007/s00792-017-0942-2.
Margesin, R. & Miteva, V. (2011), Diversity and ecology of psychrophilic microorganisms. Research in Microbiology, 162(3): 346-361. https://doi.org/10.1016/j.resmic.2010.12.004.
Margesin, R.; Schinner, F.; Marx, J. C.; Gerday, C. (2008), Psychrophiles. From Biodiversity to Biotechnology. Berlin, Germany: Springer. (pp. 211-224). https://link.springer.com/book/10.1007%2F978-3-540-74335-4.
Martins, A.; Tenreiro, T.; Andrade, G.; Gadanho, M.; Chaves, S.; Abrantes, M.; Calado, P.; Tenreiro, R.; Vieira, H. (2013), Photoprotective Bioactivity Present in a Unique Marine Bacteria Collection from Portuguese Deep Sea Hydrothermal Vents. Mar. Drugs. 11(5): 1506-1523. https://doi.org/10.3390/md11051506.
Maugeri, T. L.; Gugliandolo, C.; Caccamo, D.; Panico, A.; Lama, L.; Gambacorta, A.; Nicolaus, B. (2002), A halophilic thermotolerant Bacillus isolated from a marine hot spring able to produce a new exopolysaccharide. Biotechnology Letters, 24(7): 515-519. https://link.springer.com/article/10.1023/A:1014891431233.
Michaud, L.; Di Marco, G.; Bruni, V.; Lo Giudice, A. (2007), Biodegradative potential and characterization of psychrotolerant polychlorinated biphenyl-degrading marine bacteria isolated from a coastal station in the Terra Nova Bay (Ross Sea, Antarctica). Marine Pollution Bulletin, 54(11): 1754-1761. https://doi.org/10.1016/j.marpolbul.2007.07.011.
Michaud, L.; Lo Giudice, A.; Saitta, M.; De Domenico, M.; Bruni, V. (2004), The biodegradation efficiency on diesel oil by two psychrotrophic Antarctic marine bacteria during a two-month-long experiment. Marine Pollution Bulletin, 49(5): 405-409. https://doi.org/10.1016/j.marpolbul.2004.02.026.
Mitova, M.; Tutino, M.; Infusini, G.; Marino, G.; De Rosa, S. (2005), Exocellular Peptides from Antarctic Psychrophile Pseudoalteromonas Haloplanktis. Marine Biotechnology, 7(5): 523-531. https://doi.org/10.1007/s10126-004-5098-2.
Moriello, V. S.; Lama, L.; Poli, A.; Gugliandolo, C.; Maugeri, T. L.; Gambacorta, A.; Nicolaus, B. (2003), Production of exopolysaccharides from a thermophilic microorganism isolated from a marine hot spring in flegrean areas. Journal of Industrial Microbiology and Biotechnology, 30(2): 95-101. https://doi.org/10.1007/s10295-002-0019-8.
Nachtigall, J.; Schneider, K.; Bruntner, C.; Bull, A. T.; Goodfellow, M.; Zinecker, H.; Imhoff, J. F.; Nicholson, G.; Irran, E.; Süssmuth, R. D.; Fiedler, H.-P. (2011), Benzoxacystol, a benzoxazine-type enzyme inhibitor from the deep-sea strain Streptomyces sp. NTK 935. The Journal of Antibiotics, 64(6): 453-457. https://doi.org/10.1038/ja.2011.26.
Nakagawa, S. & Takai, K. (2008), Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiology Ecology, 65(1): 1-14. https://doi.org/10.1111/j.1574-6941.2008.00502.x.
Nichols, C. A. M.; Guezennec, J.; Bowman, J. P. (2005), Bacterial exopolysaccharides from extreme marine environments with special consideration of the Southern Ocean, sea ice, and deep-sea hydrothermal vents: a review. Marine Biotechnology, 7(4): 253-271. https://doi.org/10.1007/s10126-004-5118-2.
Nicolaus, B.; Lama, L.; Panico, A.; Moriello, V. S.; Romano, I.; Gambacorta, A. (2002), Production and characterization of exopolysaccharides excreted by thermophilic bacteria from shallow, marine hydrothermal vents of flegrean ares (Italy). Systematic and Applied Microbiology, 25(3): 319-325. https://doi.org/10.1078/0723-2020-00128.
Nicolaus, B.; Panico, A.; Manca, M. C; Lama, L.; Gambacorta, A.; Maugeri, T.; Gugliandolo, C.; Caccamo, D. (2000), A Thermophilic Bacillus Isolated From an Eolian Shallow Hydrothermal Vent Able to Produce Exopolysaccharides. Systematic and Applied Microbiology, 23(3): 426-432. https://doi.org/10.1016/S0723-2020(00)80074-0.
Nogi, Y. (2008), Bacteria in the Deep Sea: Psychropiezophiles. In: Psychrophiles: from Biodiversity to Biotechnology. Margesin, R.; Schinner, F.; Marx, J. C.; Gerday, C. eds. Springer, Berlin, Heidelberg. pp: 73-82. http://www.springer.com/gp/book/9783540743347.
Nwodo, U. U.; Green, E.; Okoh, A. I. (2012), Bacterial Exopolysaccharides: Functionality and Prospects. International Journal of Molecular Sciences, 13(11): 14002-14015. https://doi.org/10.3390/ijms131114002.
Olivera, N. L.; Sequeiros, C.; Nievas, M. L. (2007), Diversity and enzyme properties of protease-producing bacteria isolated from sub-Antarctic sediments of Isla de Los Estados, Argentina. Extremophiles, 11(3): 517-526. https://doi.org/10.1007/s00792-007-0064-3.
Oren, A. (2008), Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems, 4: 2. https://doi.org/10.1186/1746-1448-4-2.
Oren, A. (2013), Life at High Salt Concentrations. In: The Prokaryotes. Rosenberg, E.; Delong, E. F.; Lory, S.; Stackebrandt, E.; Thompson, F. eds. Springer. New York. pp: 421-440. https://link.springer.com/referenceworkentry/10.1007%2F978-3-642-30123-0_57#page-1.
Pan, H.-Q.; Yu, S.-Y.; Song, C.-F.; Wang, N.; Hua, H.-M.; Hu.; J.-C.; Wang, S.-J. (2015), Identification and Characterization of the Antifungal Substances of a Novel Streptomyces cavourensis NA4. J. Microbiol. Biotechnol. 25(3): 353-357. http://www.jmb.or.kr/journal/viewJournal.html?doi=10.4014/jmb.1407.07025.
Pan, H.-Q.; Zhang, S.-Y.; Wang, N.; Li, Z.-L.; Hua, H.-M.; Hu, J.-C.; Wang, S.-J. (2013), New Spirotetronate Antibiotics, Lobophorins H and I, from a South China Sea-Derived Streptomyces sp. 12A35. Mar. Drugs. 11(10): 3891-3901. https://doi.org/10.3390/md11103891.
Papa, R.; Parrilli, E.; Sannino, F.; Barbato, G.; Tutino, M. L.; Artini, M.; Selan, L. (2013), Anti-biofilm activity of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. Research in Microbiology, 164(5): 450-456. https://doi.org/10.1016/j.resmic.2013.01.010.
Papaleo, E.; Riccardi, L.; Villa, C.; Fantucci, P.; De Gioia, L. (2006), Flexibility and enzymatic cold-adaptation: A comparative molecular dynamics investigation of the elastase family. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1764(8): 1397-1406. https://doi.org/10.1016/j.bbapap.2006.06.005.
Parrilli, E.; Ricciardelli, A.; Casillo, A.; Sannino, F.; Papa, R.; Tilotta, M.; Artini, M.; Selan, L.; Corsaro, M. M.; Tutino, M. L. (2016), Large-scale biofilm cultivation of Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 for physiologic studies and drug discovery. Extremophiles, 20(2): 227-234. https://doi.org/10.1007/s00792-016-0813-2.
Parrilli, E.; Duilio, A.; Tutino, M. L. (2008), Heterologous Protein Expression in Psychrophilic Hosts. In: Psychrophiles: from Biodiversity to Biotechnology. Margesin, R.; Schinner, F.; Marx, J. C.; Gerday, C. eds. Springer, Berlin, Heidelberg. pp: 365-379. https://link.springer.com/chapter/10.1007%2F978-3-540-74335-4_21.
Peng, J.; Zhang, X.-Y.; Tu, Z.-C.; Xu, X.-Y.; Qi, S.-H. (2013), Alkaloids from the Deep-Sea-Derived Fungus Aspergillus westerdijkiae DFFSCS013. Journal of Natural Products. 76(5): 983-987. https://doi.org/10.1021/np400132m.
Pesic, A.; Baumann, H. I.; Kleinschmidt, K.; Ensle, P.; Wiese, J.; Süssmuth, R. D.; Imhoff, J. F. (2013), Champacyclin, a New Cyclic Octapeptide from Streptomyces Strain C42 Isolated from the Baltic Sea. Mar. Drugs. 11(12): 4834-4857. https://doi.org/10.3390/md11124834.
Pettersson, O. V.; Leong, S. L.; Lantz, H.; Rice, T.; Dijksterhuis, J.; Houbraken, J.; Samson, R. A.; Schnürer, J. (2011), Phylogeny and intraspecific variation of the extreme xerophile, Xeromyces bisporus. Fungal Biology, 115(11): 1100-1111. https://doi.org/10.1016/j.funbio.2011.06.012.
Pettit, R. K. (2011) Culturability and Secondary Metabolite Diversity of Extreme Microbes: Expanding Contribution of Deep Sea and Deep-Sea Vent Microbes to Natural Product Discovery. Marine Biotechnology. 13: 1-11. https://doi.org/10.1007/s10126-010-9294-y.
Poli, A.; Anzelmo, G.; Nicolaus, B. (2010), Bacterial Exopolysaccharides from Extreme Marine Habitats: Production, Characterization and Biological Activities. Marine Drugs. 8(6): 1779-1802. https://doi.org/10.1007/s10126-010-9294-y.
Polpass, A. J.; Sivakala, K. K.; Rajeswari, P.; Jebakumar, S. R. D. (2014), Characterization of Antibiotic Producing Rare Actinomycete Nonomuraea sp. JAJ18 Derived from an Indian Coastal Solar Saltern. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/456070.
Pugazhendi, A.; Qari, H.; Al-Badry Basahi, J. M; Godon, J. J. Dhavamani, J. (2017), Role of a halothermophilic bacterial consortium for the biodegradation of PAHs and the treatment of petroleum wastewater at extreme conditions. International Biodeterioration & Biodegradation, 121: 44-54. https://doi.org/10.1016/j.ibiod.2017.03.015.
Rajendran, N. (2015), Environmental Diversity and Biological Survivability of Halophilic Bacteria. In: Halophiles. Maheshwari D. K.; Saraf, M. eds. Springer, Cham. pp: 173-188. https://link.springer.com/chapter/10.1007%2F978-3-319-14595-2_6.
Ramírez, E. & Billett, D. (2006). La exploración de la biodiversidad marina. Fundación BBVA, Bilbao. https://www.fbbva.es/wp-content/uploads/2017/05/dat/DE_2006_Exploracion_biodiversidad.pdf.
Rateb, M. E.; Houssen, W. E.; Harrison, W. T. A.; Deng, H.; Okoro, C. K.; Asenjo, J. A.; Andrews, B. A.; Bull, A. T.; Goodfellow, M.; Ebel, R.; Jaspars, M. (2011), Diverse Metabolic Profiles of a Streptomyces Strain Isolated from a Hyper-arid Environment. Journal of Natural Products. 74(9): 1965-1971. https://doi.org/10.1021/np200470u.
Ribeiro, Â.M.; Foote, A.D.; Kupczok, A.; Frazão, B.; Limborg, M.T.; Piñeiro, R.; Abalde, S.; Rocha, S.; da Fonseca, R.R. (2017), Marine genomics: News and views. Marine Genomics. 31: 1-8. https://doi.org/10.1021/np200470u.
Rittschof, D.; Lai, C.-H.; Kok, L.-M.; Teo, S. L.-M. (2003), Pharmaceuticals as antifoulants: Concept and principles. Biofouling, 19: 207-212. https://doi.org/10.1080/0892701021000083769.
Rubiano-Labrador, C. (2006), Aislamiento y caracterización de microorganismos termofílicos anaerobios lipolíticos, proteolíticos y amilolíticos de manantiales termominerales de Paipa e Iza (Boyacá). Tesis para optar título de Microbióloga Industrial, Pontificia Universidad Javeriana. Bogotá D.C., Colombia. 116 p. http://javeriana.edu.co/biblos/tesis/ciencias/tesis249.pdf.
Sagar, S.; Esau, L.; Holtermann, K.; Hikmawan, T.; Zhang, G.; Stingl, U.; Bajic, V. B.; Kaur, M. (2013), Induction of apoptosis in cancer cell lines by the Red Sea brine pool bacterial extracts. BMC Complementary and Alternative Medicine, 13: 344. https://doi.org/10.1186/1472-6882-13-344.
Sánchez, L. A.; Gómez, F. F.; Delgado, O. D. (2009), Cold-adapted microorganisms as a source of new antimicrobials. Extremophiles, 13(1): 111-120. https://doi.org/10.1007/s00792-008-0203-5.
Sannino, F.; Parrilli, E.; Apuzzo, G. A.; De Pascale, D.; Tedesco, P.; Maida, I.; Perrin, E.; Fondi, M.; Fani, R.; Marino, G.; Tutino, M. L. (2017), Pseudoalteromonas haloplanktis produces methylamine, a volatile compound active against Burkholderia cepacia complex strains. New Biotechnology, 35: 13-18. https://doi.org/10.1016/j.nbt.2016.10.009.
Sarafin, Y.; Donio, M. B. S.; Velmurugan, S.; Michaelbabu, M.; Citarasu, T. (2014), Kocuria marina BS-15 a biosurfactant producing halophilic bacteria isolated from solar salt works in India. Saudi Journal of Biological Sciences, 21(6): 511-519. https://doi.org/10.1016/j.sjbs.2014.01.001.
Saurav, K. & Kannabiran, K. (2012), Cytotoxicity and antioxidant activity of 5-(2,4-dimethylbenzyl)pyrrolidin-2-one extracted from marine Streptomyces VITSVK5 spp. Saudi Journal of Biological Sciences, 19(1): 81-86. https://doi.org/10.1016/j.sjbs.2011.07.003.
Schiraldi, C.; Giuliano, M.; De Rosa, M. (2002), Perspectives on biotechnological applications of archaea. Archaea, 1(2): 75–86. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685559/.
Schröder, C.; Elleuche, S.; Blank, S.; Antranikian, G. (2014), Characterization of a heat-active archaeal β-glucosidase from a hydrothermal spring metagenome. Enzyme and Microbial Technology, 57: 48-54. https://doi.org/10.1016/j.enzmictec.2014.01.010.
Singh, O. V. & Gabani, P. (2011), Extremophiles: radiation resistance microbial reserves and therapeutic implications. Journal of Applied Microbiology. 110(4): 851-861. https://doi.org/10.1111/j.1365-2672.2011.04971.x.
Singh, O. V. (2013), Extremophiles: sustainable resources and biotechnological implications. Wiley-Blackwell, Hoboken, NJ. 429p. https://doi.org/10.1002/9781118394144.
Singh, P.; Raghukumar, C.; Parvatkar, R. R.; Mascarenhas-Pereira, M. B. L. (2013), Heavy metal tolerance in the psychrotolerant Cryptococcus sp. isolated from deep-sea sediments of the Central Indian Basin. Yeast, 30(3): 93-101. https://doi.org/10.1002/yea.2943.
Song, Y.; Li, Q.; Liu, X.; Chen, Y.; Zhang, Y.; Sun, A.; Zhang, W.; Zhang J.; Ju, J. (2014), Cyclic Hexapeptides from the Deep South China Sea-Derived Streptomyces scopuliridis SCSIO ZJ46 Active Against Pathogenic Gram-Positive Bacteria. Journal of Natural Products,77(8): 1937-1941. https://doi.org/10.1021/np500399v.
Spanò, A. & Arena, A. (2016), Bacterial Exopolysaccharide of Shallow Marine Vent Origin as Agent in Counteracting Immune Disorders Induced by Herpes Virus. Journal of Immunoassay and Immunochemistry, 37(3): 251-260. https://doi.org/10.1080/15321819.2015.1126602.
Spanò, A.; Gugliandolo, C.; Lentini, V.; Maugeri, T. L.; Anzelmo, G. Poli, A.; Nicolaus, B. (2013), A Novel EPS-Producing Strain of Bacillus licheniformis Isolated from a Shallow Vent Off Panarea Island (Italy). Current Microbiology, 67(1): 21-29. https://doi.org/10.1007/s00284-013-0327-4.
Stivaletta, N. & Barbieri, R. (2009), Endolithic microorganisms from spring mound evaporite deposits (southern Tunisia). Journal of Arid Environments. 73(1): 33-39. https://doi.org/10.1016/j.jaridenv.2008.09.024.
Sutherland, I. W. (2001), Microbial polysaccharides from Gram-negative bacteria. Int. Dairy. J. 11: 663-674. https://doi.org/10.1016/S0958-6946(01)00112-1.
Suthindhiran, K.; Jayasri, M. A.; Dipali, D.; Prasar, A. (2014), Screening and characterization of protease producing actinomycetes from marine saltern. Journal of Basic Microbiology, 54(10): 1098-1109. https://doi.org/10.1002/jobm.201300563.
Tiquia-Arashiro, S. & Rodrigues, D. (2016), Thermophiles and Psychrophiles in Nanotechnology. In: Extremophiles: Applications in Nanotechnology, Springer, Cham, 89-127p. https://link.springer.com/chapter/10.1007/978-3-319-45215-9_3/fulltext.html.
Trivedi, S.; Gehlot, H. S.; Rao, S. R. (2006), Protein thermostability in Archaea and Eubacteria. Genet. Mol. Res. 5(4): 816–827. http://www.funpecrp.com.br/gmr/year2006/vol4-5/gmr0169_abstract.htm.
Turner, P.; Mamo, G.; Karlsson, E. N. (2007), Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microbial Cell Factories, 6: 9. https://doi.org/10.1186/1475-2859-6-9.
Um, S.; Kim, Y.-J.; Kwon, H.; Wen, H.; Kim, S.-H.; Kwon, H.C.; Park, S.; Shin, J.; Oh, D.-C. (2013), Sungsanpin, a Lasso Peptide from a Deep-Sea Streptomycete. Journal of Natural Products, 76(5): 873-879. https://doi.org/10.1021/np300902g.
Vásquez-Ponce, F.; Higuera-Llantén, S.; Pavlov, M. S.; Ramírez-Orellana, R.; Marshall, S. H.; Olivares-Pacheco, J. (2017), Alginate overproduction and biofilm formation by psychrotolerant Pseudomonas mandelii depend on temperature in Antarctic marine sediments. Electronic Journal of Biotechnology, 28: 27-34. https://doi.org/10.1016/j.ejbt.2017.05.001.
Vidyasagar, M.; Prakash, S.; Mahajan, V.; Shouche, Y. S.; Sreeramulu, K. (2009), Purification and characterization of an extreme halothermophilic protease from a halophilic bacterium Chromohalobacter sp. TVSP101. Brazilian Journal of Microbiology, 40(1): 12-19. https://doi.org/10.1590/S1517-83822009000100002.
Wagner, M.; Abdel-Mageed, W. M.; Ebel, R.; Bull, A. T.; Goodfellow, M.; Fiedler, H.-P.; Jaspars, M. (2014), Dermacozines H–J Isolated from a Deep-Sea Strain of Dermacoccus abyssi from Mariana Trench Sediments. Journal of Natural Products, 77(2): 416-420. https://doi.org/10.1021/np400952d.
Wang, F.-Z.; Huang, Z.; Shi, X.-F.; Chen, Y.-C.; Zhang, W.-M.; Tian, X.-P.; Li, J.; Zhang, S. (2012), Cytotoxic indole diketopiperazines from the deep sea-derived fungus Acrostalagmus luteoalbus SCSIO F457. Bioorganic & Medicinal Chemistry Letters, 22(23): 7265-7267. https://doi.org/10.1016/j.bmcl.2012.08.115.
Wang, Q.; Song, F.; Xiao, X.; Huang, P.; Li, L.; Monte, A; Abdel-Mageed, W. M.; Wang, J.; Guo, H.; He, W.; Xie, F.; Dai, H.; Liu, M.; Chen, C.; Xu, H.; Liu, M.; Piggott, A. M.; Liu, X.; Capon, R. J.; Zhang, L. (2013), Abyssomicins from the South China Sea Deep-Sea Sediment Verrucosispora sp.: Natural Thioether Michael Addition Adducts as Antitubercular Prodrugs. Angewandte Chemie (International Ed. in English), 52(4): 1231-1234. https://doi.org/10.1002/anie.201208801.
Wang, Y.; Tang, X.; Shao, Z.; Ren, J.; Liu, D.; Proksch, P.; Lin, W. (2014), Indole-based alkaloids from deep-sea bacterium Shewanella piezotolerans with antitumor activities. The Journal of Antibiotics, 67(5): 395-399. https://doi.org/10.1038/ja.2014.3.
Wilson, Z. E. & Brimble, M. A. (2009), Molecules derived from the extremes of life. Nat. Prod. Rep. 26(1): 44-71. http://pubs.rsc.org/en/content/articlelanding/2009/np/b800164m#!divAbstract.
Wu, G.; Ma, H.; Zhu, T.; Li, J.; Gu.; Q.; Li, D. (2012), Penilactones A and B, two novel polyketides from Antarctic deep-sea derived fungus Penicillium crustosum PRB-2. Tetrahedron, 68(47): 9745-9749. https://doi.org/10.1016/j.tet.2012.09.038.
Xu, C.; Sun, X.; Jin, M.; Zhang, X. (2017), A Novel Benzoquinone Compound Isolated from Deep-Sea Hydrothermal Vent Triggers Apoptosis of Tumor Cells. Mar. Drugs. 15(7): 200. https://doi.org/10.3390/md15070200.
Xu, Y.; Li, H.; Li, X.; Xiao, X.; Qian, P.-Y. (2009), Inhibitory Effects of a Branched-Chain Fatty Acid on Larval Settlement of the Polychaete Hydroides elegans. Mar. Biotechnol. 11(4): 495. https://doi.org/10.1007/s10126-008-9161-2.
Yang, X.-W.; Zhang, G.-Y.; Ying, J.-X.; Yang, B.; Zhou, X.-F.; Steinmetz, A.; Liu, Y.-H.; Wang, N. (2012), Isolation, Characterization, and Bioactivity Evaluation of 3-((6-Methylpyrazin-2-yl)methyl)-1H-indole, a New Alkaloid from a Deep-Sea-Derived Actinomycete Serinicoccus profundi sp. nov., Mar. Drugs. 11(1): 33-39. https://doi.org/10.3390/md11010033.
Yin, J.; Chen, J.-C.; Wu, Q.; Chen, G.-Q. (2015), Halophiles, coming stars for industrial biotechnology. Biotechnology Advances. 33(7): 1433-1442. https://doi.org/10.1016/j.biotechadv.2014.10.008.
You, J.; Dai, H.; Chen, Z.; Liu, G.; He, Z.; Song, F.; Yang, X.; Fu, H.; Zhang, L.; Chen, X. (2010), Trichoderone, a novel cytotoxic cyclopentenone and cholesta-7, 22-diene-3β, 5α, 6β-triol, with new activities from the marine-derived fungus Trichoderma sp., J. Ind. Microbiol. Biotechnol. 37(3): 245-252. https://link.springer.com/article/10.1007/s10295-009-0667-z.
You, Z.-Y.; Wang, Y.-H.; Zhang, Z.-G.; Xu, M.-J.; Xie, S.-J.; Han, T.-S.; Feng, L.; Li, X.-G.; Xu, J. (2013), Identification of Two Novel Anti-Fibrotic Benzopyran Compounds Produced by Engineered Strains Derived from Streptomyces xiamenensis M1-94P that Originated from Deep-Sea Sediments. Mar. Drugs. 11(10): 4035-4049. https://doi.org/10.3390/md11104035.
Yukimura, K.; Nakai, R.; Kohshima, S.; Uetake, J.; Kanda, H.; Naganuma, T. (2009), Spore-forming halophilic bacteria isolated from Arctic terrains: implications for long-range transportation of microorganisms. Polar. Sci. 3: 163-169. https://doi.org/10.1016/j.polar.2009.07.002.
Zanchetta, P.; Lagarde, N.; Guezennec, J. (2003), A New Bone-Healing Material: A Hyaluronic Acid-Like Bacterial Exopolysaccharide. Calcified Tissue International, 72(1): 74-79. https://doi.org/10.1007/s00223-001-2091-x.
Zhang, H. L.; Hua, H. M.; Pei, Y. H. Yao, X. S.; Zhang, H. L.; Hua, H. M.; Pei, Y. H.; Yao, X. S. (2004), Three New Cytotoxic Cyclic Acylpeptides from Marine Bacillus sp., Chemical and Pharmaceutical Bulletin, 52(8): 1029.v https://www.jstage.jst.go.jp/article/cpb/52/8/52_8_1029/_article.
Zhang, Y.; Li, X.; Bartlett, D. H.; Xiao, X. (2015), Current developments in marine microbiology: high-pressure biotechnology and the genetic engineering of piezophiles. Current Opinion in Biotechnology, Environmental biotechnology • Energy biotechnology. 33: 157-164. https://doi.org/10.1016/j.copbio.2015.02.013.
Zhang, W.; Liu, Z.; Li, S.; Yang, T.; Zhang, Q.; Ma, L.; Tian, X.; Zhang, H.; Huang, C.; Zhang, S.; Ju, J.; Shen, Y.; Zhang, C. (2012), Spiroindimicins A–D: New Bisindole Alkaloids from a Deep-Sea-Derived Actinomycete. Organic Letters, 14(13): 3364-3367. http://pubs.acs.org/doi/abs/10.1021/ol301343n.
Zhou, X.; Huang, H.; Chen, Y.; Tan, J.; Song, Y.; Zou, J.; Tian, X.; Hua, Y.; Ju, J. (2012), Marthiapeptide A, an Anti-infective and Cytotoxic Polythiazole Cyclopeptide from a 60 L Scale Fermentation of the Deep Sea-Derived Marinactinospora thermotolerans SCSIO 00652. Journal of Natural Products, 75(12): 2251-2255. http://pubs.acs.org/doi/abs/10.1021/np300554f.
Zhou, X.; Huang, H.; Li, J.; Song, Y.; Jiang, R.; Liu, J.; Zhang, S.; Hua Y.; Ju, J. (2014), New anti-infective cycloheptadepsipeptide congeners and absolute stereochemistry from the deep sea-derived Streptomyces drozdowiczii SCSIO 10141. Tetrahedron, Peptide Macrocycles, 70(42): 7795-7801.
https://doi.org/10.1016/j.tet.2014.02.007.
Zhu, Y.; Li, H.; Ni, H.; Xiao, A.; Li, L.; Cai, H. (2015), Molecular cloning and characterization of a thermostable lipase from deep-sea thermophile Geobacillus sp. EPT9. World Journal of Microbiology and Biotechnology, 31(2): 295-306. https://doi.org/10.1007/s11274-014-1775-0.
Zhu, Y.; Wang, G.; Ni, H.; Xiao, A.; Cai, H. (2014), Cloning and characterization of a new manganese superoxide dismutase from deep-sea thermophile Geobacillus sp. EPT3. World Journal of Microbiology and Biotechnology, 30(4): 1347-1357. https://doi.org/10.1007/s11274-013-1536-5.
Złoch, M.; Thiem, D.; Gadzała-Kopciuch, R.; Hrynkiewicz, K. (2016), Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to Cd2+. Chemosphere. 156: 312-325. https://doi.org/10.1016/j.chemosphere.2016.04.130.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Lina Marcela Blandón, Mario Alejandro Marín, Marynes Quintero, Laura Marcela Jutinico-Shubach, Manuela Montoya-Giraldo, Marisol Santos-Acevedo, Javier Gómez-León. (2022). Diversity of cultivable bacteria from deep-sea sediments of the Colombian Caribbean and their potential in bioremediation. Antonie van Leeuwenhoek, 115(3), p.421. https://doi.org/10.1007/s10482-021-01706-4.
2. Lina Blandón, Katleen L. Alvarado-Campo, Albert D. Patiño, Eylin Jiménez-Vergara, Marynes Quintero, Manuela Montoya-Giraldo, Laura M. Jutinico-Shubach, Marisol Santos-Acevedo, Javier Gómez-León. (2020). Polyhydroxyalkanoate Production from Two Species of Marine Bacteria: A Comparative Study. Journal of Polymers and the Environment, 28(9), p.2324. https://doi.org/10.1007/s10924-020-01770-3.
3. Marynes Quintero, Lina M. Blandón, Oscar M. Vidal, Juan D. Guzman, Jorge E. Gómez-Marín, Albert D. Patiño, Diego A. Molina, Gloria M. Puerto-Castro, Javier Gómez-León. (2022). In vitro biological activity of extracts from marine bacteria cultures against Toxoplasma gondii and Mycobacterium tuberculosis. Journal of Applied Microbiology, 132(4), p.2705. https://doi.org/10.1111/jam.15397.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2018 Revista de la Facultad de Ciencias

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores o titulares del derecho de autor de cada artículo confieren a la Revista de la Facultad de Ciencias de la Universidad Nacional de Colombia una autorización no exclusiva, limitada y gratuita sobre el artículo que una vez evaluado y aprobado se envía para su posterior publicación ajustándose a las siguientes características:
1. Se remite la versión corregida de acuerdo con las sugerencias de los evaluadores y se aclara que el artículo mencionado se trata de un documento inédito sobre el que se tienen los derechos que se autorizan y se asume total responsabilidad por el contenido de su obra ante la Revista de la Facultad de Ciencias, la Universidad Nacional de Colombia y ante terceros.
2. La autorización conferida a la revista estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo de la Revista de la Facultad de Ciencias en el Sistema Open Journal Systems y en la página principal de la revista (https://revistas.unal.edu.co/index.php/rfc/index), así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.
3. Los autores autorizan a la Revista de la Facultad de Ciencias de la Universidad Nacional de Colombia para publicar el documento en el formato en que sea requerido (impreso, digital, electrónico o cualquier otro conocido o por conocer) y autorizan a la Revista de la Facultad de Ciencias para incluir la obra en los índices y buscadores que estimen necesarios para promover su difusión.
4. Los autores aceptan que la autorización se hace a título gratuito, por lo tanto renuncian a recibir emolumento alguno por la publicación, distribución, comunicación pública y cualquier otro uso que se haga en los términos de la presente autorización.
5. Todos los contenidos de la Revista de la Facultad de Ciencias, están publicados bajo la Licencia Creative Commons Atribución – No comercial – Sin Derivar 4.0.
MODELO DE CARTA DE PRESENTACIÓN y CESIÓN DE DERECHOS DE AUTOR