NANOFORMULACIONES DE BIOINSECTICIDAS BOTÁNICOS PARA EL CONTROL DE PLAGAS AGRICOLAS
NANOFORMULATIONS OF BOTANICAL INSECTICIDES FOR THE CONTROL OF AGRICULTURAL PESTS
DOI:
https://doi.org/10.15446/rev.fac.cienc.v9n1.81401Palabras clave:
Nanotecnología, Nanoformulación, Latinoamérica, Caracterización, Bioinsecticidas (es)Nanotechnology, Nanoformulation, Latin America, Characterization, Bioinsecticides (en)
Descargas
El interés por controlar las plagas agrícolas ha sido constante a lo largo de la historia. Aun con la llegada de los insecticidas sintéticos, en las últimas décadas la comunidad científica y la industria agroquímica se han enfocado en productos de origen vegetal a través de metabolitos con gran actividad insecticida, alta biodegradabilidad y bajos efectos residuales hacia el medio ambiente. Sin embargo, las dificultades que presentan las formulaciones de bioinsecticidas botánicos a gran escala, han generado la búsqueda y aplicación de nuevas tecnologías. En este contexto, el presente trabajo analiza el potencial de la nanotecnología en el desarrollo de bioinsecticidas botánicos, así como la caracterización de las nanoformulaciones y los posibles avances en Latinoamérica, una región considerada rica en productos naturales con alta capacidad para la exploración de nuevas formulaciones e ingredientes activos.
The interest in controlling pests has been constant throughout the history. Even with the advent of synthetic insecticides, in the latest decades, the scientific community and the agrochemical industry have focused on products of plant origin through metabolites with high insecticidal activity, high biodegradability and low effects on the environment. However, the difficulties presented by the formulations of botanical bioinsecticides in a large scale, have generated the search and application of new technologies. In this context, the present work analyzes the potential of nanotechnology in the development of botanical bioinsecticides, as well as the characterization of nanoformulations and the possible advances in Latin America, a rich region in natural products with high capacity for the exploration of new formulations and active ingredients.
Referencias
Abduz Zahir, A., Bagavan, A., Kamaraj, C., Elango, G., & Abdul Rahuman, A. (2012). Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. Journal of Biopesticides, 5, 95–102.
Ahmadi, Z., Saber, M., Bagheri, M., & Mahdavinia, G. R. (2018). Achillea millefolium essential oil and chitosan nanocapsules with enhanced activity against Tetranychus urticae. Journal of Pest Science, 91(2), 837–848. https://doi.org/10.1007/s10340-017-0912-6
Asib, N., Omar, D., & Muhamad, R. (2015). Preparation, characterization and toxicity of nano-emulsion formulations of rotenone extract of Derris Elliptica Improving the quality of herbicide applications to oil palm in Malaysia using the CFValve-A constant flow valve View project Nano emulsion for. Journal of Chemical, Biological and Physical Sciences, 5(4), 3989–3997. Retrieved from https://www.researchgate.net/publication/325158630
Bhattacharjee, S. (2016). DLS and zeta potential - What they are and what they are not? Journal of Controlled Release, 235, 337–351. https://doi.org/10.1016/j.jconrel.2016.06.017
Bourbon, A. I., Gonçalves, R. F. S., Vicente, A. A., & Pinheiro, A. C. (2018). Characterization of Particle Properties in Nanoemulsions. In Nanoemulsions: Formulation, Applications, and Characterization (pp. 519–546). ELsevier. https://doi.org/10.1016/B978-0-12-811838-2.00016-3
Buhroo, A. A., Nisa, G., Asrafuzzaman, S., Prasad, R., Rasheed, R., & Bhattacharyya, A. (2017). Biogenic silver nanoparticles from Trichodesma indicum aqueous leaf extract against Mythimna separata and evaluation of its larvicidal efficacy. Journal of Plant Protection Research, 57(2), 194–200. https://doi.org/10.1515/jppr-2017-0026
Campos, E. V. R., Proença, P. L. F., Oliveira, J. L., Bakshi, M., Abhilash, P. C., & Fraceto, L. F. (2018). Use of botanical insecticides for sustainable agriculture: Future perspectives. Ecological Indicators, In press. https://doi.org/10.1016/j.ecolind.2018.04.038
Campos, E. V. R., Proença, P. L. F., Oliveira, J. L., Pereira, A. E. S., De Morais Ribeiro, L. N., Fernandes, F. O., … Fraceto, L. F. (2018). Carvacrol and linalool co-loaded in β-cyclodextrin-grafted chitosan nanoparticles as sustainable biopesticide aiming pest control. Scientific Reports, 1–14. https://doi.org/10.1038/s41598-018-26043-x
Cano-Sarabia, M., & Maspoch, D. (2016). Nanoencapsulation. In Encyclopedia of Nanotechnology (pp. 2356–2369). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-017-9780-1_50
Choupanian, M., Omar, D., Basri, M., & Asib, N. (2017). Preparation and characterization of neem oil nanoemulsion formulations against Sitophilus oryzae and Tribolium castaneum adults. Journal of Pesticide Science, 42(4), 158–165. https://doi.org/10.1584/jpestics.D17-032
Christofoli, M., Candida-Costa, E. C., Bicalho, K. U., de Cássia Domingues, V., Peixoto, M. F., Fernandes-Alves, C. C., … de Melo Cazal, C. (2015). Insecticidal effect of nanoencapsulated essential oils from Zanthoxylum rhoifolium (Rutaceae) in Bemisia tabaci populations. Industrial Crops and Products, 70, 301–308. https://doi.org/10.1016/j.indcrop.2015.03.025
Da Costa, J. T., Forim, M. R., Costa, E. S., De Souza, J. R., Mondego, J. M., & Boiça Junior, A. L. (2014). Effects of different formulations of neem oil-based products on control Zabrotes subfasciatus (Boheman, 1833) (Coleoptera: Bruchidae) on beans. Journal of Stored Products Research, 56, 49–53. https://doi.org/10.1016/j.jspr.2013.10.004
De Carvalho, S. S., Vendramim, J. D., De Sá, I. C. G., Da Silva, M. F. D. G. F., Ribeiro, L. D. P., & Forim, M. R. (2015). Efeito inseticida sistêmico de nanoformulações à base de nim sobre Bemisia tabaci (Hemiptera: Aleyrodidae) biótipo B em tomateiro. Bragantia, 74(3), 298–306. https://doi.org/10.1590/1678-4499.0404
De Oliveira, J. L., Campos, E. V. R., Bakshi, M., Abhilash, P. C., & Fraceto, L. F. (2014). Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: Prospects and promises. Biotechnology Advances, 32(8), 1550–1561. https://doi.org/10.1016/j.biotechadv.2014.10.010
Dimetry, N. Z. (2014). Different Plant Families as Bioresource for Pesticides. In Advances in Plant Biopesticides (pp. 1–20). New Delhi: Springer India. https://doi.org/10.1007/978-81-322-2006-0_1
Ebadollahi, A., Sendi, J. J., & Aliakbar, A. (2017). Efficacy of Nanoencapsulated Thymus eriocalyx and Thymus kotschyanus Essential Oils by a Mesoporous Material MCM-41 Against Tetranychus urticae (Acari: Tetranychidae). Journal of Economic Entomology, 110(6), 2413–2420. https://doi.org/10.1093/jee/tox234
Fahmi, M. Z., Suwito, H., Susilo, A., Joeniarti, E., Jaswdi, A. M. R., & Indrasari, N. (2017). Chitosan-based neem seed extract nanocapsules: A new approach on enhancing its effectiveness as an insecticide delivery agent. Journal of Chemical Technology and Metallurgy, 52(6), 1129–1134.
Fernandes, C. P., de Almeida, F. B., Silveira, A. N., Gonzalez, M. S., Mello, C. B., Feder, D., … Falcão, D. Q. (2014). Development of an insecticidal nanoemulsion with Manilkara subsericea (Sapotaceae) extract. Journal of Nanobiotechnology, 12(1), 1–9. https://doi.org/10.1186/1477-3155-12-22
Ferreira, F. T. R., Vendramim, J. D., & Forim, M. R. (2012). Bioatividade de nanoformulações de nim sobre a traça-do-tomateiro. Ciência Rural, 42(8), 1347–1353. https://doi.org/10.1590/s0103-84782012000800003
Forim, M. R., Costa, E. S., Da Silva, M. F. D. G. F., Fernandes, J. B., Mondego, J. M., & Boiça Junior, A. L. (2013). Development of a new method to prepare nano-/microparticles loaded with extracts of azadirachta indica, their characterization and use in controlling plutella xylostella. Journal of Agricultural and Food Chemistry, 61, 9131–9139. https://doi.org/10.1021/jf403187y
Ghosh, V., Mukherjee, A., & Chandrasekaran, N. (2016). Formulation and Characterization of Plant Essential Oil Based Nanoemulsion : Evaluation of its Larvicidal Activity ... Asian Journal of Chemistry, 25, 321–323.
Giongo, A. M. M., Vendramim, J. D., Forim, M. R., Giongo, A. M. M., Vendramim, J. D., & Forim, M. R. (2016). Evaluation of neem-based nanoformulations as alternative to control fall armyworm. Ciência e Agrotecnologia, 40(1), 26–36. https://doi.org/10.1590/S1413-70542016000100002
Gundewadi, G., Sarkar, D. J., Rudra, S. G., & Singh, D. (2018). Preparation of basil oil nanoemulsion using Sapindus mukorossi pericarp extract: Physico-chemical properties and antifungal activity against food spoilage pathogens. Industrial Crops and Products, 125, 95–104. https://doi.org/10.1016/j.indcrop.2018.08.076
Hashem, A. S., Awadalla, S. S., Zayed, G. M., Maggi, F., & Benelli, G. (2018). Pimpinella anisum essential oil nanoemulsions against Tribolium castaneum—insecticidal activity and mode of action. Environmental Science and Pollution Research, 25, 18802–18812. https://doi.org/10.1007/s11356-018-2068-1
Hayat, K., Afzal, M., Aqueel, M. A., Ali, S., Khan, Q. M., & Ashfaq, U. (2018). Determination of insecticide residues and their adverse effects on blood profile of occupationally exposed individuals. Ecotoxicology and Environmental Safety, 163, 382–390. https://doi.org/10.1016/j.ecoenv.2018.07.004
Hayles, J., Johnson, L., Worthley, C., & Losic, D. (2017). 5 - Nanopesticides: a review of current research and perspectives. In Elsevier (Ed.), New Pesticides and Soil Sensors (pp. 193–225). https://doi.org/10.1016/B978-0-12-804299-1.00006-0
Helgeson, M. E. (2016). Colloidal behavior of nanoemulsions: Interactions, structure, and rheology. Current Opinion in Colloid and Interface Science, 25, 39–50. https://doi.org/10.1016/j.cocis.2016.06.006
Isman, M. B. (2015). A renaissance for botanical insecticides? Pest Management Science, 71(12), 1587–1590. https://doi.org/10.1002/ps.4088
Isman, M. B., & Grieneisen, M. L. (2014). Botanical insecticide research: Many publications, limited useful data. Trends in Plant Science, 19(3), 140–145. https://doi.org/10.1016/j.tplants.2013.11.005
Kamaraj, C., Balasubraman, G., Deepak, P., Aiswarya, D., Arul, D., Vadivel, A., … Perumal, P. (2018). Bio-pesticidal effects of Trichoderma viride formulated titanium dioxide nanoparticle and their physiological and biochemical changes on Helicoverpa armigera (Hub.). Pesticide Biochemistry and Physiology, 149, 26–36. https://doi.org/10.1016/j.pestbp.2018.05.005
Kamaraj, C., Gandhi, P. R., Elango, G., Karthi, S., Chung, I. M., & Rajakumar, G. (2018). Novel and environmental friendly approach, Impact of Neem (Azadirachta indica) gum nano formulation (NGNF) on Helicoverpa armigera (Hub.) and Spodoptera litura (Fab.). International Journal of Biological Macromolecules, 107, 59–69. https://doi.org/10.1016/j.ijbiomac.2017.08.145
Kumar, N., Kumar, R., Shakil, N. A., Sarkar, D. J., & Chander, S. (2018). Evaluation of fipronil nanoformulations for effective management of brown plant hopper (Nilaparvata lugens) in rice. International Journal of Pest Management, 65(1), 86–93. https://doi.org/10.1080/09670874.2018.1468046
Kumar, S., Nehra, M., Dilbaghi, N., Marrazza, G., Aly Hassan, A., & Kim, K.-H. (2019). Nano-based smart pesticide formulations: Emerging opportunities for agriculture. Journal of Controlled Release, 294, 131–153. https://doi.org/10.1016/j.jconrel.2018.12.012
Lacasta, J., Lopez-Pellicer, F. J., Espejo-Garcia, B., Nogueras-Iso, J., & Zarazaga-Soria, F. J. (2018). Agricultural recommendation system for crop protection. Computers and Electronics in Agriculture, 152, 82–89. https://doi.org/10.1016/j.compag.2018.06.049
Malaikozhundan, B., & Vinodhini, J. (2018). Nanopesticidal effects of Pongamia pinnata leaf extract coated zinc oxide nanoparticle against the Pulse beetle, Callosobruchus maculatus. Materials Today Communications, 14, 106–115. https://doi.org/10.1016/j.mtcomm.2017.12.015
Margulis-Goshen, K., & Magdassi, S. (2013). Nanotechnology: An Advanced Approach to the Development of Potent Insecticides. In Advanced Technologies for Managing Insect Pests (pp. 295–314). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-4497-4_15
Marinello, F. (2017). Atomic force Microscopy. In CIRP Encyclopedia of Production Engineering (pp. 1–76). https://doi.org/10.1007/978-3-642-35950-7
Miresmailli, S., & Isman, M. B. (2014). Botanical insecticides inspired by plant – herbivore chemical interactions. Trends in Plant Science, 19(1), 29–35. https://doi.org/10.1016/j.tplants.2013.10.002
Nenaah, G. E., Ibrahim, S. I. A., & Al-Assiuty, B. A. (2015). Chemical composition, insecticidal activity and persistence of three Asteraceae essential oils and their nanoemulsions against Callosobruchus maculatus (F.). Journal of Stored Products Research, 61, 9–16. https://doi.org/10.1016/j.jspr.2014.12.007
Nuruzzaman, M., Rahman, M. M., Liu, Y., & Naidu, R. (2016). Nanoencapsulation, Nano-guard for Pesticides: A New Window for Safe Application. Journal of Agricultural and Food Chemistry, 64, 1447–1483. https://doi.org/10.1021/acs.jafc.5b05214
Oliveira, A. P., Santana, A. S., Santana, E. D. R., Lima, A. P. S., Faro, R. R. N., Nunes, R. S., … Bacci, L. (2017). Nanoformulation prototype of the essential oil of Lippia sidoides and thymol to population management of Sitophilus zeamais (Coleoptera: Curculionidae). Industrial Crops and Products, 107, 198–205. https://doi.org/10.1016/j.indcrop.2017.05.046
Osanloo, M., Amani, A., Sereshti, H., Abai, M. R., Esmaeili, F., & Sedaghat, M. M. (2017). Preparation and optimization nanoemulsion of Tarragon (Artemisia dracunculus) essential oil as effective herbal larvicide against Anopheles stephensi. Industrial Crops and Products, 109, 214–219. https://doi.org/10.1016/j.indcrop.2017.08.037
Pant, M., Dubey, S., Patanjali, P. K., Naik, S. N., & Sharma, S. (2014). Insecticidal activity of eucalyptus oil nanoemulsion with karanja and jatropha aqueous filtrates. International Biodeterioration and Biodegradation, 91, 119–127. https://doi.org/10.1016/j.ibiod.2013.11.019
Papanikolaou, N. E., Kalaitzaki, A., Karamaouna, F., Michaelakis, A., Papadimitriou, V., Dourtoglou, V., & Papachristos, D. P. (2018). Nano-formulation enhances insecticidal activity of natural pyrethrins against Aphis gossypii (Hemiptera: Aphididae) and retains their harmless effect to non-target predators. Environmental Science and Pollution Research, 25, 10243–10249. https://doi.org/10.1007/s11356-017-8596-2
Pasquoto-Stigliani, T., Campos, E. V. R., Oliveira, J. L., Silva, C. M. G., Bilesky-José, N., Guilger, M., … De Lima, R. (2017). Nanocapsules Containing Neem (Azadirachta Indica) Oil: Development, Characterization, and Toxicity Evaluation. Scientific Reports, 1–12. https://doi.org/10.1038/s41598-017-06092-4
Pereira-Da-Silva, M. de A., & Ferri, F. A. (2017). 1 - Scanning Electron Microscopy (pp. 1–35). https://doi.org/10.1016/B978-0-323-49778-7/00001-1
Pinto, N. de O. F., Rodrigues, T. H. S., Pereira, R. de C. A., Silva, L. M. A. e., Cáceres, C. A., Azeredo, H. M. C. de, … Canuto, K. M. (2016). Production and physico-chemical characterization of nanocapsules of the essential oil from Lippia sidoides Cham. Industrial Crops and Products, 86, 279–288. https://doi.org/10.1016/j.indcrop.2016.04.013
Ramsden, J. J. (2016). The nanoscale. In Elsevier (Ed.), Nanotechnology (pp. 19–40). https://doi.org/10.1016/b978-0-323-39311-9.00008-x
Reddy, P. P. (2015). Climate resilient agriculture for ensuring food security. Climate Resilient Agriculture for Ensuring Food Security. https://doi.org/10.1007/978-81-322-2199-9
Sakho, E. H. M., Allahyari, E., Oluwafemi, O. S., Thomas, S., & Kalarikkal, N. (2017). Dynamic Light Scattering (DLS). Thermal and Rheological Measurement Techniques for Nanomaterials Characterization (Vol. 3). Elsevier Inc. https://doi.org/10.1016/B978-0-323-46139-9.00002-5
Schwaferts, C., Niessner, R., Elsner, M., & Ivleva, N. P. (2019). Methods for the analysis of submicrometer- and nanoplastic particles in the environment. TrAC Trends in Analytical Chemistry, 112, 52–65. https://doi.org/10.1016/J.TRAC.2018.12.014
Shah, M. R., Imran, M., & Ullah, S. (2017a). Nanoemulsions. In Lipid-Based Nanocarriers for Drug Delivery and Diagnosis (pp. 111–137). https://doi.org/10.1016/B978-0-323-52729-3.00004-4
Shah, M. R., Imran, M., & Ullah, S. (2017b). Solid lipid nanoparticles. In Elsevier (Ed.), Lipid-Based Nanocarriers for Drug Delivery and Diagnosis (pp. 1–35). William Andrew Publishing. https://doi.org/10.1016/B978-0-323-52729-3.00001-9
Singh, B., & Kaur, A. (2018). Control of insect pests in crop plants and stored food grains using plant saponins: A review. LWT - Food Science and Technology, 87, 93–101. https://doi.org/10.1016/j.lwt.2017.08.077
Singh, Y., Meher, J. G., Raval, K., Khan, F. A., Chaurasia, M., Jain, N. K., & Chourasia, M. K. (2017). Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release, 252, 28–49. https://doi.org/10.1016/j.jconrel.2017.03.008
Tang, Q. L., Ma, K. S., Hou, Y. M., & Gao, X. W. (2017). Monitoring insecticide resistance and diagnostics of resistance mechanisms in the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae) in China. Pesticide Biochemistry and Physiology, 143, 39–47. https://doi.org/10.1016/j.pestbp.2017.09.013
Velasques, J., Henrique, M., Abrantes, G., Emanuel, B., Luiz, O., & Migliolo, L. (2017). The rescue of botanical insecticides : A bioinspiration for new niches and needs. Pesticide Biochemistry and Physiology, 143, 14–25. https://doi.org/10.1016/j.pestbp.2017.10.003
Villena De Francisco, E., & García-estepa, R. M. (2018). Nanotechnology in the agrofood industry. Journal of Food Engineering, 238, 1–11. https://doi.org/10.1016/j.jfoodeng.2018.05.024
Volpato, A., Baretta, D., Zortéa, T., Campigotto, G., Galli, G. M., Glombowsky, P., … Da Silva, A. S. (2016). Larvicidal and insecticidal effect of Cinnamomum zeylanicum oil (pure and nanostructured) against mealworm (Alphitobius diaperinus) and its possible environmental effects. Journal of Asia-Pacific Entomology, 19(4), 1159–1165. https://doi.org/10.1016/j.aspen.2016.10.008
Werdin González, J. O., Stefanazzi, N., Murray, A. P., Ferrero, A. A., & Fernández Band, B. (2014). Novel nanoinsecticides based on essential oils to control the German cockroach. Journal of Pest Science, 88(2), 393–404. https://doi.org/10.1007/s10340-014-0607-1
Yang, F. L., Li, X. G., Zhu, F., & Lei, C. L. (2009). Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Agricultural and Food Chemistry, 57(21), 10156–10162. https://doi.org/10.1021/jf9023118
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Fabian Hernandez-Tenorio, Alejandra M. Miranda, Carlos A. Rodríguez, Catalina Giraldo-Estrada, Alex A. Sáez. (2022). Potential Strategies in the Biopesticide Formulations: A Bibliometric Analysis. Agronomy, 12(11), p.2665. https://doi.org/10.3390/agronomy12112665.
2. José Guadalupe Ontiveros-Guerra, Agustín Hernández- Juárez, Sonia Noemí Ramírez-Barrón, Julio César Chacón-Hernández. (2024). Nanopartículas en el control de insectos y ácaros plaga. Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, 18(34), p.1e. https://doi.org/10.22201/ceiich.24485691e.2025.34.69833.
3. Gabriela Patricia Unigarro Villarreal, Anderson do Espirito Santo Pereira, Roberta Ranielle Matos de Freitas, Maria Carolina Blassioli Moraes, Anderson Ferreira Sepulveda, Daniele Ribeiro de Araujo, Leonardo Fernandes Fraceto. (2023). Zein-based nanoformulations with encapsulated methyl salicylate incorporated in 3D printing biopolymer devices targeting potential uses in pest management. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 670, p.131511. https://doi.org/10.1016/j.colsurfa.2023.131511.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2020 Revista de la Facultad de Ciencias
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores o titulares del derecho de autor de cada artículo confieren a la Revista de la Facultad de Ciencias de la Universidad Nacional de Colombia una autorización no exclusiva, limitada y gratuita sobre el artículo que una vez evaluado y aprobado se envía para su posterior publicación ajustándose a las siguientes características:
1. Se remite la versión corregida de acuerdo con las sugerencias de los evaluadores y se aclara que el artículo mencionado se trata de un documento inédito sobre el que se tienen los derechos que se autorizan y se asume total responsabilidad por el contenido de su obra ante la Revista de la Facultad de Ciencias, la Universidad Nacional de Colombia y ante terceros.
2. La autorización conferida a la revista estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo de la Revista de la Facultad de Ciencias en el Sistema Open Journal Systems y en la página principal de la revista (https://revistas.unal.edu.co/index.php/rfc/index), así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.
3. Los autores autorizan a la Revista de la Facultad de Ciencias de la Universidad Nacional de Colombia para publicar el documento en el formato en que sea requerido (impreso, digital, electrónico o cualquier otro conocido o por conocer) y autorizan a la Revista de la Facultad de Ciencias para incluir la obra en los índices y buscadores que estimen necesarios para promover su difusión.
4. Los autores aceptan que la autorización se hace a título gratuito, por lo tanto renuncian a recibir emolumento alguno por la publicación, distribución, comunicación pública y cualquier otro uso que se haga en los términos de la presente autorización.
5. Todos los contenidos de la Revista de la Facultad de Ciencias, están publicados bajo la Licencia Creative Commons Atribución – No comercial – Sin Derivar 4.0.
MODELO DE CARTA DE PRESENTACIÓN y CESIÓN DE DERECHOS DE AUTOR