Publicado

2020-07-01

El modelamiento en la floricultura

Floriculture modeling

DOI:

https://doi.org/10.15446/rev.fac.cienc.v9n2.86791

Palabras clave:

crecimiento, crisantemo, funcional (es)

Descargas

Autores/as

El modelamiento en la agricultura, con el desarrollo de las computadoras, cada vez cobra mayor importancia, no solamente para el monitoreo de las variables de estado del sistema, sino también en los procesos de toma de decisiones y gestión de este. El objetivo de este trabajo fue el de efectuar una revisión en torno a la evolución del modelamiento en la agricultura. Se partió de las propuestas de modelos de crecimiento y desarrollo clásicos, las cuales sentaron las bases para las estrategias de los modelos funcionales y estos dos a su vez para las modernas metodologías implementadas en el modelamiento dinámico. Se finaliza con un resumen de las estrategias y variables de estado para las cuales se reportan propuestas de modelos en el cultivo del crisantemo.
Modeling in agriculture, with the development of computers, becomes increasingly important, not only for monitoring the variable state of the system but also in the decision-making and management processes of the system. The objective of this work was to review the evolution of modeling in agriculture. It started with the proposals of classic growth and development models, which laid the foundation for functional model strategies, and these two, in turn, for the modern methodologies implemented in dynamic modeling. It concludes with a summary of the approaches and state variables for which model proposals in chrysanthemum cultivation are reported.

Referencias

Aikman, D. P., & Benjamin, L. R. (1994). A model for plant and crop growth, allowing for competition for light by the use of potential and restricted projected crown zone areas. Annals of Botany, 73(2), 185-194.

Asocolflores. 2016. Informe anual (2016) [En línea]. Asociación Colombiana de Exportadores de Flores. [Consultada en diciembre de 2019]. Disponible en: http://www.asocolflores.org

Blackman, V. (1919). On some aspects of the plea for reconstruction. New Phytologist, 18(1‐2), 50-56.

Carvalho, S. M. P., Heuvelink, E., Cascais, R., & Van Kooten, O. (2002). Effect of day and night temperature on internode and stem length in chrysanthemum: is everything explained by DIF?. Annals of Botany, 90(1), 111-118.

Charles-Edwards, D. A., & Acock, B. (1977). Growth Response of a Chrysanthemum Crop to the Environment. II. A Mathematical Analysis Relating Photosynthesis and Growth. Annals of Botany, 41(1), 49–58.

Dai, J. F., Luo, W. H., & Yang, Z. (2008). A photo-thermal model for predicting development and quality of standard cut chrysanthemum in greenhouses. Acta Horticulturae, 801(2), 1423-1430.

Dayan, E., Presnov, E., & Fuchs, M. (2004). Prediction and calculation of morphological characteristics and distribution of assimilates in the ROSGRO model. Mathematics and Computers in Simulation, 65(1-2), 101–116.

De Visser, P. H. B., van der Heijden, G. W. A. M., Marcelis, L. F. M., Carvalho, S. M. P., & Heuvelink, E. (2006). A functional-structural model of chrysanthemum for prediction of ornamental quality. Acta Horticulturae, (718), 59–66.

Gutiérrez, C. R. P., González, R. M. M., & Baille, A. (2006). Dry matter production and partitioning in rose (Rosa hybrida) flower shoots. Scientia Horticulturae, 107(3), 284–291.

Heuvelink, E. (1996). Tomato growth and yield: quantitative analysis and synthesis. PhD Thesis, Wageningen University. The Netherlands, ISBN 90-5485-498-7.

Heuvelink, E., Lee, J. H., Buiskool, R. P. M., & Ortega, L. (2002). Light on cut chrysanthemum: measurement and simulation of crop growth and yield. Acta Horticulturae, (580), 197–202.

Hunt, R., Causton, D. R., Shipley, B., & Askew, A. P. (2002). A modern tool for classical plant growth analysis. Annals of botany, 90(4), 485-488.

Hunt, R. 1990. Basic growth analysis: plant growth analysis for beginners. London, England, Unwin Hyman.

Janka, E., Körner, O., Rosenqvist, E., & Ottosen, C. O. (2016). A coupled model of leaf photosynthesis, stomatal conductance, and leaf energy balance for chrysanthemum (Dendranthema grandiflora). Computers and Electronics in Agriculture, 123, 264–274.

Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., … Wheeler, T. R. (2017). Brief history of agricultural systems modeling. Agricultural Systems, 155, 240–254.

Kang, M., Heuvelink, E., Carvalho, S. M. P., & de Reffye, P. (2012). A virtual plant that responds to the environment like a real one: the case for chrysanthemum. New Phytologist, 195: 384–395.

Keating, B. A., & Thorburn, P. J. (2018). Modelling crops and cropping systems—evolving purpose, practice and prospects. European Journal of Agronomy, 100, 163-176.

Kim, W. S., & Lieth, J. H. (2012). Simulation of year-round plant growth and nutrient uptake in Rosa hybrida over flowering cycles. Horticulture, Environment, and Biotechnology, 53(3), 193-203.

Larsen, R. U., & Hidén, C. (1995). Predicting leaf unfolding in flower induced shoots of greenhouse grown chrysanthemum. Scientia Horticulturae, 63(3-4), 225–239.

Larsen, R. U., & Persson, L. (1999). Modelling flower development in greenhouse chrysanthemum cultivars in relation to temperature and response group. Scientia Horticulturae, 80(1-2), 73–89.

Lee, J. H. (2002). Analysis and simulation of growth and yield of cut chrysanthemum. PhD Dissertation, Wageningen University, The Netherlands.

Lee, J. H., Heuvelink, E., & Challa, H. (2002). Effects of planting date and plant density on crop growth in cut chrysanthemum. Journal of Horticultural Science and Biotechnology, 77, 238–247.

Lee, J. H., & Heuvelink, E. (2003). Simulation of leaf area development based on dry matter partitioning and specific leaf area for cut chrysanthemum. Annals of Botany, 91(3), 319-327.

Lin, L., Li, W., Shao, J., Luo, W., Dai, J., Yin, X., Zhou, Y., Zhao, C. (2011). Modelling the effects of soil water potential on growth and quality of cut chrysanthemum (Chrysanthemum morifolium). Scientia Horticulturae, 130(1), 275–288.

López, M. A., Chaves, B., Flórez, V. J., y Salazar, M. R. (2010). Modelo de aparición de nudos en clavel (Dianthus caryophyllus L.) cv. Delphi cultivado en sustratos. Agronomía Colombiana. 28(19):47-54.

López, M. M. A., Chaves C. B., & Flórez R. V. J. (2014). Potential growing model for the standard carnation cv. Delphi. Agronomía Colombiana, 32(2), 196-204.

Mashonjowa, E., Ronsse, F., Mubvuma, M., Milford, J. R., & Pieters, J. G. (2013). Estimation of leaf wetness duration for greenhouse roses using a dynamic greenhouse climate model in Zimbabwe. Computers and Electronics in Agriculture, 95, 70–81.

Mutsaers, H. J. W., & Wang, Z. (1999). Are simulation models ready for agricultural research in developing countries?. Agronomy Journal, 91(1), 1-4.

Oquist, P. (1978). The epistemology of action research. Acta Sociologica, 21(2), 143-163.

Paine, C. E. T., Marthews, T. R., Vogt, D. R., Purves, D., Rees, M., Hector, A., & Turnbull, L. A. (2012). How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods in Ecology and Evolution, 3(2), 245–256.

Pearcy, R. W., Ehleringer, J. R., Mooney, H. A., & Rundel, P. W. (1989). Plant Physiological Ecology: Field methods and instrumentation. Dordrecht, Netherlands: Springer.

Pearson, S., Hadley, P., Wheldon, A. E. (1995). A model of the effect of day and night temperatures on the height of chrysanthemums. Acta Horticulturae, 378: 71-79.

Peltonen‐Sainio, P., Forsman, K., & Poutala, T. (1997). Crop Management Effects on Pre‐and Post‐Anthesis Changes in Leaf Area Index and Leaf Area Duration and their Contribution to Grain Yield and Yield Components in Spring Cereals. Journal of Agronomy and Crop Science, 179(1), 47-61.

Rajput, A., Rajput, S. S., & Jha, G. (2017). Physiological parameters leaf area index, crop growth rate, relative growth rate and net assimilation rate of different varieties of rice grown under different planting geometries and depths in SRI. International Journal of Pure & Applied Bioscience, 5(1), 362-367.

Schouten, R. E., Carvalho, S. M. P., Heuvelink, E., & Van Kooten, O. (2002). Modelling of Temperature‐controlled Internode Elongation Applied to Chrysanthemum. Annals of botany, 90(3), 353-359.

Uhlmann, L. O., Streck, N. A., Becker, C. C., Schwab, N. T., Benedetti, R. P., Charão, A. S., … Becker, D. (2017). PhenoGlad: A model for simulating development in Gladiolus. European Journal of Agronomy, 82, 33–49.

Van Ittersum, M., Leffelaar, P., van Keulen, H., Kropff, M., Bastiaans, L., & Goudriaan, J. (2003). On approaches and applications of the Wageningen crop models. European Journal of Agronomy, 18(3-4), 201–234.

Van Keulen, H., & Dayan, E., (1993). TOMGRO, a greenhouse tomato simulation model. Simulation Report CABO-T no. 29, Wageningen University and Research Centre, The Netherlands.

Van Laar, H. H., Goudriaan, J., & Van Keulen, H. (1997). SUCROS97: Simulation of crop growth for potential and water-limited production situations. Quantitative Approaches in Systems Analysis, No. 14. C.T. de Wit Graduate School for Production Ecology and Resource Conservation, Wageningen, The Netherlands.

Wallach, D., Makowski, D., Jones, J. W., & Brun, F. (2014). Working with dynamic crop models: methods, tools and examples for agriculture and environment. Academic Press.

Willits, D. H., Nelson, P. V., Peet, M. M., Depa, M. A., & Kuehny, J. S. (1992). Modeling Nutrient Uptake in Chrysanthemum as a Function of Growth Rate, Journal of the American Society for Horticultural Science, 117(5), 769-774.

Yin, X., Goudriaan, J., Lantinga, E. A., Vos, J., & Spiertz, H. J. (2003). A flexible sigmoid function of determinate growth. Annals of botany, 91(3), 361-371.

Cómo citar

APA

Arredondo Hoyos, A. K. & Castañeda-Sánchez, D. (2020). El modelamiento en la floricultura. Revista de la Facultad de Ciencias, 9(2), 80–92. https://doi.org/10.15446/rev.fac.cienc.v9n2.86791

ACM

[1]
Arredondo Hoyos, A.K. y Castañeda-Sánchez, D. 2020. El modelamiento en la floricultura. Revista de la Facultad de Ciencias. 9, 2 (jul. 2020), 80–92. DOI:https://doi.org/10.15446/rev.fac.cienc.v9n2.86791.

ACS

(1)
Arredondo Hoyos, A. K.; Castañeda-Sánchez, D. El modelamiento en la floricultura. Rev. Fac. Cienc. 2020, 9, 80-92.

ABNT

ARREDONDO HOYOS, A. K.; CASTAÑEDA-SÁNCHEZ, D. El modelamiento en la floricultura. Revista de la Facultad de Ciencias, [S. l.], v. 9, n. 2, p. 80–92, 2020. DOI: 10.15446/rev.fac.cienc.v9n2.86791. Disponível em: https://revistas.unal.edu.co/index.php/rfc/article/view/86791. Acesso em: 13 nov. 2025.

Chicago

Arredondo Hoyos, Angie Katherine, y Darío Castañeda-Sánchez. 2020. «El modelamiento en la floricultura». Revista De La Facultad De Ciencias 9 (2):80-92. https://doi.org/10.15446/rev.fac.cienc.v9n2.86791.

Harvard

Arredondo Hoyos, A. K. y Castañeda-Sánchez, D. (2020) «El modelamiento en la floricultura», Revista de la Facultad de Ciencias, 9(2), pp. 80–92. doi: 10.15446/rev.fac.cienc.v9n2.86791.

IEEE

[1]
A. K. Arredondo Hoyos y D. Castañeda-Sánchez, «El modelamiento en la floricultura», Rev. Fac. Cienc., vol. 9, n.º 2, pp. 80–92, jul. 2020.

MLA

Arredondo Hoyos, A. K., y D. Castañeda-Sánchez. «El modelamiento en la floricultura». Revista de la Facultad de Ciencias, vol. 9, n.º 2, julio de 2020, pp. 80-92, doi:10.15446/rev.fac.cienc.v9n2.86791.

Turabian

Arredondo Hoyos, Angie Katherine, y Darío Castañeda-Sánchez. «El modelamiento en la floricultura». Revista de la Facultad de Ciencias 9, no. 2 (julio 1, 2020): 80–92. Accedido noviembre 13, 2025. https://revistas.unal.edu.co/index.php/rfc/article/view/86791.

Vancouver

1.
Arredondo Hoyos AK, Castañeda-Sánchez D. El modelamiento en la floricultura. Rev. Fac. Cienc. [Internet]. 1 de julio de 2020 [citado 13 de noviembre de 2025];9(2):80-92. Disponible en: https://revistas.unal.edu.co/index.php/rfc/article/view/86791

Descargar cita

CrossRef Cited-by

CrossRef citations2

1. William Alberto Lombana-Peña, Oscar Eduardo Pedraza-Contreras, Ramiro Ordoñez-Córdoba, Omar Ariel Nova Manosalva, Julián Andrés Salamanca Bernal. (2023). Statistical model based on climatological variables for the prediction of pest and disease incidence in rose (Rosa spp.) crops. Agronomía Colombiana, 41(1), p.e103408. https://doi.org/10.15446/agron.colomb.v41n1.103408.

2. Maira Camila Montoya-Areiza, Lucas Esteban Cano Gallego, Darío Antonio Castañeda-Sánchez, Sergio Arango-Arcila, Oscar de Jesús Córdoba-Gaona. (2022). Vegetative Growth of Genipa americana L. Accessions. Colombia forestal, 25(2), p.45. https://doi.org/10.14483/2256201X.18721.

Dimensions

PlumX

Visitas a la página del resumen del artículo

840

Descargas

Los datos de descargas todavía no están disponibles.