Publicado

2021-01-01

Pichia pastoris as a biological platform to produce recombinant proteins: relevance for development of biotechnological products in Colombia

Pichia pastoris como una plataforma biológica para producir proteínas recombinantes: relevancia para el desarrollo de productos biotecnológicos en Colombia

DOI:

https://doi.org/10.15446/revfaccienc.v10n1.86805

Palabras clave:

Fermentation, Metabolism, Methylotrophic yeast, Pichia pastoris, Protein expression (en)
Expresión de proteínas, Fermentación, Levadura metilotrófica, Metabolismo, Pichia pastoris (es)

Descargas

Autores/as

  • Juan David Rosas Cabrera Universidad Nacional de Colombia
  • Carlos Andrés Díaz Rodríguez Universidad Nacional de Colombia

The world market for compounds produced by biotechnological means is growing due to the search and implementation of cellular systems that allow the mass production of complex molecules with a specific biological activity. These range from drugs, to enzymes and proteins for diverse uses, such as academic research and the development of industrial processes. Pichia pastoris is a methylotrophic yeast that has been studied in recent decades for the expression and generation of recombinant proteins, because it has features that make it especially efficient, not only to host external DNA, but also to express it and, thus, produce a wide variety of molecules. In this study, the most important aspects related to the production of recombinant proteins are examined, by using P. pastoris as a model, from the most common expression strategy, to the aspects related to the cultivation at bioreactor scale and, by yielding high-value products. Some papers conducted, in Colombia, are also reviewed, as well as their approach and the current state of the expression system in the country's biotechnology and its barriers, by concluding that studies with P. pastoris are scarce and are mainly developed around a few academic centers.

El mercado mundial de compuestos producidos por medios biotecnológicos está creciendo debido a la búsqueda e implementación de sistemas celulares que permiten la producción masiva de moléculas complejas con una actividad biológica específica. Estas van desde los medicamentos, hasta las enzimas y las proteínas para usos diversos como la investigación académica y el desarrollo de procesos industriales. Pichia pastoris es una levadura metilotrófica que se ha estudiado en los últimos decenios para la expresión y generación de proteínas recombinantes debido a que posee características que la hacen especialmente eficiente, no sólo para albergar ADN externo sino también para expresarlo y producir así una amplia variedad de moléculas. En el presente estudio se examinan los aspectos más importantes relacionados con la producción de proteínas recombinantes utilizando P. pastoris como modelo, desde las estrategias de expresión más comunes, hasta los aspectos relacionados con el cultivo a escala de biorreactor y obtención de productos de alto valor agregado. Se revisan también algunos trabajos realizados en Colombia, su enfoque y el estado actual del sistema de expresión en la biotecnología del país y sus barreras, concluyendo que los estudios con P. pastoris son pocos y se desarrollan, principalmente, alrededor de unos pocos centros académicos.

Referencias

Anane, E., van Rensburg, E. & Görgens, J. F. (2016). Comparison of constitutive and inducible β-fructofuranosidase production by recombinant Pichia pastoris in fed-batch culture using defined and semi-defined media, South African Journal of Chemical Engineering, 22, 17–22. doi: 10.1016/j.sajce.2016.10.001. DOI: https://doi.org/10.1016/j.sajce.2016.10.001

Ardila-Leal, L. D., Albarracín-Pardo, D. A., Rivera-Hoyos, C. M., Morales-Álvarez, E. D., Poutou Piñales, R. A., Cardozo-Bernal, A. M., Quevedo-Hidalgo, B. E., Pedroza-Rodríguez, A. M.,Díaz-Rincón, D. J., Rodríguez-López, A., Alméciga-Díaz, C. J. & Cuervo-Patiño, C. L. (2019). Media improvement for 10 L bioreactor production of rPOXA 1B laccase by P. pastoris. 3 Biotech, 9(12),1–16. doi: 10.1007/s13205-019-1979-y DOI: https://doi.org/10.1007/s13205-019-1979-y

Avers, C. & Federman, M. (1968). The occurrence in yeast of cytoplasmic granules which resemble microbodies. The Journal of Cell Biology, 37(2), 555-559. doi: 10.1083/jcb.37.2.555 DOI: https://doi.org/10.1083/jcb.37.2.555

Aw, R. & Polizzi, K. M. (2013). Can too many copies spoil the broth?’, Microbial Cell Factories, 12(1), 1–9. doi: 10.1186/1475-2859-12-128. DOI: https://doi.org/10.1186/1475-2859-12-128

Baghban, R., Tehran, T. E. W. & Way, T. E. (2016). Camelid-derived heavy-chain nanobody against Clostridium botulinum neurotoxin E in Pichia pastoris, Biotechnology and Applied Biochemistry, 98(21), 1–16. doi: 10.1002/bab.1226. DOI: https://doi.org/10.1002/bab.1226

Bai, J., Swartz, D. J., Protasevich, I. I., Brouillette, C. G., Harrell, P. M., Hildebrandt, E., Gasser, B., Mattanovich, D., Ward, A., Chang, G. & Urbatsch, I. L. (2011). A gene optimization strategy that enhances production of fully functional P-Glycoprotein in Pichia pastoris. PLoS ONE, 6(8). doi:10.1371/journal.pone.0022577 DOI: https://doi.org/10.1371/journal.pone.0022577

Bankefa, O. E. et al. (2018). Hac1p homologues from higher eukaryotes can improve the secretion of heterologous proteins in the yeast Pichia pastoris, Biotechnology Letters. Springer Netherlands, 40(7), 1149–1156. doi: 10.1007/s10529-018-2571-y. DOI: https://doi.org/10.1007/s10529-018-2571-y

Ben Azoun, S., Belhaj, A. E., Göngrich, R., Gasser, B., & Kallel, H. (2016). Molecular optimization of rabies virus glycoprotein expression in Pichia pastoris. Microbial Biotechnology, 9(3), 355–368. doi:10.1111/1751-7915.12350

Ben Azoun, S., Belhaj, A., Göngrich, R., Gasser, B. & Kallel, H. (2016). Molecular optimization of rabies virus glycoprotein expression in Pichia pastoris. Microbial Biotechnology, 9(3), 355-368. doi:10.1111/1751-7915.12350 DOI: https://doi.org/10.1111/1751-7915.12350

Bernal-Camargo, D., Gaitán-Bohórquez, J. & León-Robayo, É. (2018). Medicamentos biosimilares en Colombia: una revisión desde el consumo informado. Revista Ciencias De La Salud, 16(2), 311. doi:10.12804/revistas.urosario.edu.co/revsalud/a.6772 DOI: https://doi.org/10.12804/revistas.urosario.edu.co/revsalud/a.6772

Blanco-García, E., Ledón-Naranjo, N., & Lage-Dávila, A. (2018). Rising Cancer Drug Prices: What Can Low-and Middle-income Countries Do?. Scielosp.org. Retrieved 29 April 2020, from https://scielosp.org/article/medicc/2018.v20n4/35-39/. DOI: https://doi.org/10.37757/MR2018.V20.N4.8

Cereghino, J. L. and Cregg, J. M. (2000). Heterologous protein expression in the methylotrophic yeast Pichia pastoris, FEMS Microbiology Reviews, 24(1), 45–66. doi: 10.1111/j.1574-6976.2000.tb00532.x. DOI: https://doi.org/10.1111/j.1574-6976.2000.tb00532.x

Chahal, S. et al. (2017). Structural characterization of the α-mating factor prepro-peptide for secretion of recombinant proteins in Pichia pastoris, Gene. Elsevier B.V., 598, 50–62. doi: 10.1016/j.gene.2016.10.040. DOI: https://doi.org/10.1016/j.gene.2016.10.040

Colloca, L., Panaccione, R. & Murphy, T. (2019). The Clinical Implications of Nocebo Effects for Biosimilar Therapy. Frontiers In Pharmacology, 10. doi:10.3389/fphar.2019.01372 DOI: https://doi.org/10.3389/fphar.2019.01372

Colombiacompra.gov.co.(2019). Estudio de Mercado. Compra pública pre-comercial para la innovación. Convocatoria de ideas para la producción de bajo volumen de medicamentos biotecnológicos.. Retrieved 29 April 2020, from https://www.colombiacompra.gov.co/sites/cce_public/files/cce_documentos/estudio_de_mercado.pdf.

Cregg, J. M. et al. (1985). Pichia pastoris as a host system for transformations, Molecular and Cellular Biology, 5(12), 3376–3385. doi: 10.1128/mcb.5.12.3376. DOI: https://doi.org/10.1128/mcb.5.12.3376-3385.1985

Cregg, J. M. et al. (2000). Recombinant protein expression in Pichia pastoris, Applied Biochemistry and Biotechnology - Part B Molecular Biotechnology, 16(1), 23–52. doi: 10.1385/MB:16:1:23. DOI: https://doi.org/10.1385/MB:16:1:23

De Schutter, K., Lin, Y., Tiels, P., Van Hecke, A., Glinka, S., & Weber-Lehmann, J. et al. (2009). Genome sequence of the recombinant protein production host Pichia pastoris. Nature Biotechnology, 27(6), 561-566. doi: 10.1038/nbt.1544 DOI: https://doi.org/10.1038/nbt.1544

Demain, A. L. and Vaishnav, P. (2009). Production of recombinant proteins by microbes and higher organisms’, Biotechnology Advances. Elsevier Inc., 27(3), 297–306. doi: 10.1016/j.biotechadv.2009.01.008. DOI: https://doi.org/10.1016/j.biotechadv.2009.01.008

Díaz, C., Valero, K., Zapata Loaiza, S., Buitrago, J., Orozco Sánchez, F. (2020). Diseño conceptual de una planta de producción de un biosimilar del medicamento contra el cáncer de mama trastuzumab a partir de células CHO. Revista Colombiana de Cancerología. https://www.revistacancercol.org/index.php/cancer/issue/view/50/RCCAN Vol.24 N°1 2020

Duan, G. et al. (2019). Screening endogenous signal peptides and protein folding factors to promote the secretory expression of heterologous proteins in Pichia pastoris, Journal of Biotechnology. Elsevier, 306(October 2018), 193–202. doi: 10.1016/j.jbiotec.2019.06.297. DOI: https://doi.org/10.1016/j.jbiotec.2019.06.297

Duan, X., Gao, J., & Zhou, Y. (2018). Advances in engineering methylotrophic yeast for biosynthesis of valuable chemicals from methanol. Chinese Chemical Letters, 29(5), 681-686. doi:10.1016/j.cclet.2017.11.015 DOI: https://doi.org/10.1016/j.cclet.2017.11.015

Dunn, M. F., Ramírez-Trujillo, J. A. and Hernández-Lucas, I. (2009). Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis, Microbiology, 155(10), 3166–3175. doi: 10.1099/mic.0.030858-0. DOI: https://doi.org/10.1099/mic.0.030858-0

Gao, M., Dong, S., Yu, R., Wu, J., Zheng, Z., Shi, Z., & Zhan, X. (2011). Improvement of ATP regeneration efficiency and operation stability in porcine interferon-α production by Pichia pastoris under lower induction temperature. Korean Journal of Chemical Engineering, 28(6), 1412–1419. doi:10.1007/s11814-010-0527-6 DOI: https://doi.org/10.1007/s11814-010-0527-6

Garcia-Ortega, X. et al. (2013). Fed-batch operational strategies for recombinant Fab production with Pichia pastoris using the constitutive GAP promoter, Biochemical Engineering Journal, 79, 172–181. doi: 10.1016/j.bej.2013.07.013 DOI: https://doi.org/10.1016/j.bej.2013.07.013

Garcia-Ortega, X. et al. (2016). A step forward to improve recombinant protein production in Pichia pastoris: From specific growth rate effect on protein secretion to carbon-starving conditions as advanced strategy, Process Biochemistry, 51(6), 681–691. doi: 10.1016/j.procbio.2016.02.018. DOI: https://doi.org/10.1016/j.procbio.2016.02.018

Gouzy-Olmos, M., Cháves-Tequia, L. M., Rojas-Fajardo, M. F., Morales-Álvarez, E. D.,Rivera-Hoyos, C. M., Poutou-Piñales, R. A., González-Neira, E. M., Reyes-Montaño, E. A.,Cardozo-Bernal, Á. M., Gómez-Méndez, L. D., & Pedroza-Rodríguez, A. M. (2018). Statistical improvement of batch culture with immobilized Pichia pastoris cells for rPOXA1B laccase production. American Journal of Biochemistry and Biotechnology, 14(2), 88–107. doi:10.3844/ajbbsp.2018.88.107 DOI: https://doi.org/10.3844/ajbbsp.2018.88.107

Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: non-clinical and clinical issues. Ema.europa.eu. (2014). Retrieved 28 April 2020, from:https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-similarbiological-medicinal-products-containing-biotechnology-derived-proteins-active_en-2.pdf.

Harmand, J. et al. (2017) The Chemostat. First Edit, The Chemostat. First Edit. ISTE Ltd and John Wiley & Sons, Inc. doi: 10.1002/9781119437215. DOI: https://doi.org/10.1002/9781119437215

Herbert, D., Elsworth, R. and Telling, R. C. (1956). The Continuous Culture of Bacteria; a Theoretical and Experimental Study, Journal of General Microbiology, 14(3), pp. 601–622. doi: 10.1099/00221287-14-3-601. DOI: https://doi.org/10.1099/00221287-14-3-601

Joung, J. (2015). Korean regulations for biosimilars. Generics And Biosimilars Initiative Journal, 4(2), 93-94. doi: 10.5639/gabij.2015.0402.019 DOI: https://doi.org/10.5639/gabij.2015.0402.019

Kaida-Yip, F., Deshpande, K., Saran, T., & Vyas, D. (2018). Biosimilars: Review of current applications, obstacles, and their future in medicine. World Journal Of Clinical Cases, 6(8), 161-166. doi:10.12998/wjcc.v6.i8.161

Kallel, H. (2016). Heterologous expression of rabies virus glycoprotein in the methylotrophic yeast Pichia pastoris. New Biotechnology, 33, S57. doi:10.1016/j.nbt.2016.06.923

Kaida-Yip, F., Deshpande, K., Saran, T. & Vyas, D. (2018). Biosimilars: Review of current applications, obstacles, and their future in medicine. World Journal Of Clinical Cases, 6(8),161-166. doi:10.12998/wjcc.v6.i8.161 DOI: https://doi.org/10.12998/wjcc.v6.i8.161

Kallel, H. (2016). Heterologous expression of rabies virus glycoprotein in the methylotrophic yeast Pichia pastoris. New Biotechnology, 33, S57. doi:10.1016/j.nbt.2016.06.923 DOI: https://doi.org/10.1016/j.nbt.2016.06.923

Kang, Z. et al. (2016). Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications, World Journal of Microbiology and Biotechnology, 33(1), 1–8. doi: 10.1007/s11274-016-2185-2 DOI: https://doi.org/10.1007/s11274-016-2185-2

Karaoglan, M., Yildiz, H. & Inan, M. (2014). Screening of signal sequences for extracellular production of Aspergillus niger xylanase in Pichia pastoris. Biochemical Engineering Journal, 92, 16-21. doi:10.1016/j.bej.2014.07.005 DOI: https://doi.org/10.1016/j.bej.2014.07.005

Krainer, F. W., Dietzsch, C., Hajek, T., Herwig, C., Spadiut, O., & Glieder, A. (2012). Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway. Microbial Cell Factories, 11(1), 22. doi:10.1186/1475-2859-11-22 DOI: https://doi.org/10.1186/1475-2859-11-22

Kuwae, S. et al. (2005). Production of recombinant human antithrombin by Pichia pastoris’, Journal of Bioscience and Bioengineering, 99(3), 264–271. doi: 10.1263/jbb.99.264 DOI: https://doi.org/10.1263/jbb.99.264

Landázuri, P., Poutou-Piñales, R. A., Acero-Godoy, J., Córdoba-Ruiz, H. A., Echeverri- Peña, O. Y.,Sáenz, H., Delgado, J. M., & Barrera-Avellaneda, L. A. (2009). Cloning and shake flask expression of hrIDS-Like in Pichia pastoris. African Journal of Biotechnology, 8(12), 2871–2877. doi:10.5897/AJB08.610

Lee, J., & Komagata, K. (1980). Taxonomic study of methanol-assimilating yeasts. The Journal Of General And Applied Microbiology, 26(2), 133-158. doi:10.2323/jgam.26.133 DOI: https://doi.org/10.2323/jgam.26.133

Li, P. et al. (2007). Expression of recombinant proteins in Pichia pastoris, Applied Biochemistry and Biotechnology, 142(2), 105–124. doi: 10.1007/s12010-007-0003-x. DOI: https://doi.org/10.1007/s12010-007-0003-x

Lin, J., Panigraphy, D., Trinh, L., Folkman, J., & Shiloach, J. (2000). Production process for recombinant human angiostatin in Pichia pastoris. Journal of Industrial Microbiology And Biotechnology, 24(1), 31-35. doi:10.1038/sj.jim.2900766 DOI: https://doi.org/10.1038/sj.jim.2900766

Lin-Cereghino, G., Godfrey, L., de la Cruz, B., Johnson, S., Khuongsathiene, S. & Tolstorukov, I. et al. (2006). Mxr1p, a Key Regulator of the Methanol Utilization Pathway and Peroxisomal Genes in Pichia pastoris. Molecular and Cellular Biology, 26(3), 883-897. doi:10.1128/mcb.26.3.883-897.2006 DOI: https://doi.org/10.1128/MCB.26.3.883-897.2006

Liu, W. C. et al. (2019). Fed-batch high-cell-density fermentation strategies for Pichia pastoris growth and production, Critical Reviews in Biotechnology, 39(2), 258–271. doi: 10.1080/07388551.2018.1554620 DOI: https://doi.org/10.1080/07388551.2018.1554620

Looser, V. et al. (2014). Cultivation strategies to enhance productivity of Pichia pastoris: A review, Biotechnology Advances, 33(6), 1177–1193. doi: 10.1016/j.biotechadv.2015.05.008. DOI: https://doi.org/10.1016/j.biotechadv.2015.05.008

Lushchak, O., & Lushchak, V. (2008). Catalase modifies yeast Saccharomyces cerevisiae response towards S-nitrosoglutathione-induced stress. Redox Report, 13(6), 283-291. doi:10.1179/135100008x309037 DOI: https://doi.org/10.1179/135100008X309037

Macauley-Patrick, S. et al. (2005). Heterologous protein production using the Pichia pastoris expression system, Yeast, 22(4), 249–270. doi: 10.1002/yea.1208. DOI: https://doi.org/10.1002/yea.1208

Maity, N., Thawani, A., Sharma, A., Gautam, A., Mishra, S., & Sahai, V. (2015). Expression and Control of Codon-Optimized Granulocyte Colony-Stimulating Factor in Pichia pastoris. Applied Biochemistry and Biotechnology, 178(1), 159-172. doi:10.1007/s12010-015-1865-y DOI: https://doi.org/10.1007/s12010-015-1865-y

Manrique López, S., & Jiménez Barbosa, W. (2012). Mercado de medicamentos biotecnológicos en el Sistema General de Seguridad Social en Salud. Ciencia & Tecnología Para La Salud Visual Y Ocular, 10(2), 59. doi:10.19052/sv.143 DOI: https://doi.org/10.19052/sv.1436

Mayson, B. E. et al. (2003). Effects of methanol concentration on expression levels of recombinant protein in fed-batch cultures of Pichia methanolica, Biotechnology and Bioengineering, 81(3), 291–298. doi: 10.1002/bit.10464. DOI: https://doi.org/10.1002/bit.10464

Menéndez, J., Valdes, I. and Cabrera, N. (2003). The ICLI gene of Pichia pastoris, transcriptional regulation and use of its promoter, Yeast, 20(13), 1097–1108. doi: 10.1002/yea.1028. DOI: https://doi.org/10.1002/yea.1028

Mochizuki, S. et al. (2001). Expression and characterization of recombinant human antithrombin III in Pichia pastoris, Protein Expression and Purification, 23(1), 55–65. doi: 10.1006/prep.2001.1479. DOI: https://doi.org/10.1006/prep.2001.1479

Moorkens, E., Jonker-Exler, C., Huys, I., Declerck, P., Simoens, S. & Vulto, A. (2016). Overcoming Barriers to the Market Access of Biosimilars in the European Union: The Case of Biosimilar Monoclonal Antibodies. Frontiers In Pharmacology, 7. doi:10.3389/fphar.2016.00193 DOI: https://doi.org/10.3389/fphar.2016.00193

Nabhan, C., Parsad, S., Mato, A., & Feinberg, B. (2018). Biosimilars in Oncology in the United States. JAMA Oncology, 4(2), 241. doi:10.1001/jamaoncol.2017.2004 DOI: https://doi.org/10.1001/jamaoncol.2017.2004

Odinet, J., Day, C., Cruz, J., & Heindel, G. (2018). The Biosimilar Nocebo Effect? A Systematic Review of Double-Blinded Versus Open-Label Studies. Journal of Managed Care & Specialty Pharmacy, 24(10), 952-959. doi:10.18553/jmcp.2018.24.10.95 DOI: https://doi.org/10.18553/jmcp.2018.24.10.952

Ogata, K., Nishikawa, H. and Ohsugi, M. (1969). A yeast capable of utilizing methanol, Agricultural and Biological Chemistry, 33(10), 1519–1520. doi: 10.1080/00021369.1969.10859497. DOI: https://doi.org/10.1080/00021369.1969.10859497

Ogrunc, M. (2014). Reactive oxygen species: The good, the bad, and the enigma. Molecular & Cellular Oncology, 1(3), e964033. doi:10.4161/23723548.2014.964033 DOI: https://doi.org/10.4161/23723548.2014.964033

Ojeda, Lisette Pérez y Cristiá, Rafael Pérez (2016). Fortalecimiento de la regulación sanitaria en las Américas: las autoridades reguladoras de referencia regional. Revista Panamericana de Salud Pública. v. 39, n. 5, 294-298. ISSN 1680-5348.

Payne, W., Gannon, P., & Kaiser, C. (1995). An inducible acid phosphatase from the yeast Pichia pastoris: characterization of the gene and its product. Gene, 163(1), 19-26. doi:10.1016/0378-1119(95)00379-k DOI: https://doi.org/10.1016/0378-1119(95)00379-K

Perrone, G., Tan, S., & Dawes, I. (2008). Reactive oxygen species and yeast apoptosis. Biochimica Et Biophysica Acta (BBA) - Molecular Cell Research, 1783(7), 1354-1368. doi:10.1016/j.bbamcr.2008.01.023 DOI: https://doi.org/10.1016/j.bbamcr.2008.01.023

Pimentel, N., Rodríguez-Lopez, A., Díaz, S., Losada, J. C., Díaz-Rincón, D. J., Cardona , C., Espejo-Mojica, Á. J., Ramírez, A. M., Ruiz, F., Landázuri, P., Poutou-Piñales, R. A., Cordoba-Ruiz, H. A., Alméciga-Díaz, C. J., & Barrera-Avellaneda, L. A. (2018). Production and characterization of a human lysosomal recombinant iduronate-2-sulfatase produced in Pichia pastoris. Biotechnology and Applied Biochemistry, 65(5), 655–664. doi:10.1002/bab.1660 DOI: https://doi.org/10.1002/bab.1660

Potvin, G., Ahmad, A. and Zhang, Z. (2012). Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: A review, Biochemical Engineering Journal. Elsevier B.V., 64, 91–105. doi: 10.1016/j.bej.2010.07.017. DOI: https://doi.org/10.1016/j.bej.2010.07.017

Poutou-Piñales, R. A., Córdoba, H., Quevedo-Hidalgo, B. E., Landázuri, P., Echeverri-Peña, O. Y., Sáenz, H., Vanegas, A., Acero, J., González, A., Herrera, J., Algecira, N., Caicedo, L., & Barrera, L. A. (2005). Expresión de iduronato 2-sulfato sulfatasa humana recombinante (IDShr) EN Pichia pastoris. Universitas Scientiarum, 10(1), 75-96.

Rahimi, A. et al. (2019). Enhancing the efficiency of recombinant hepatitis B surface antigen production in Pichia pastoris by employing continuous fermentation, Biochemical Engineering Journal, 141, 112–119. doi: 10.1016/j.bej.2018.10.019. DOI: https://doi.org/10.1016/j.bej.2018.10.019

Ray, P., Huang, B., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling, 24(5), 981-990. doi:10.1016/j.cellsig.2012.01.008 DOI: https://doi.org/10.1016/j.cellsig.2012.01.008

Razaghi, A., Tan, E., Lua, L. H. L., Owens, L., Karthikeyan, O. P., & Heimann, K. (2017). Is Pichia pastoris a realistic platform for industrial production of recombinant human interferon gamma? Biologicals, 45, 52–60. doi:10.1016/j.biologicals.2016.09.015 DOI: https://doi.org/10.1016/j.biologicals.2016.09.015

Rebnegger, C. et al. (2016). Pichia Pastoris exhibits high viability and a low maintenance energy requirement at near-zero specific growth rates, Applied and Environmental Microbiology, 82(15), 4570–4583. doi: 10.1128/AEM.00638-16. DOI: https://doi.org/10.1128/AEM.00638-16

Resina, D. et al. (2005). Developing high cell density fed-batch cultivation strategies for heterologous protein production in Pichia pastoris using the nitrogen source-regulated FLD1 promoter, Biotechnology and Bioengineering, 91(6), 760–767. doi: 10.1002/bit.20545. DOI: https://doi.org/10.1002/bit.20545

Resina, D. et al. (2009). Engineering of bottlenecks in Rhizopus oryzae lipase production in Pichia pastoris using the nitrogen source-regulated FLD1 promoter, New Biotechnology, 25(6), 396–403. doi: 10.1016/j.nbt.2009.01.008. DOI: https://doi.org/10.1016/j.nbt.2009.01.008

Rivera-Hoyos, C. M., Morales-Álvarez, E. D., Abelló-Esparza, J., Buitrago-Pérez, D. F.,Martínez-Aldana, N., Salcedo-Reyes, J. C., Poutou-Piñales, R. A. & Pedroza-Rodríguez,A. M. (2018). Detoxification of pulping black liquor with Pleurotus ostreatus or recombinant Pichia pastoris followed by CuO/TiO2/visible photocatalysis. Scientific Reports, 8(1), 1–15.doi:10.1038/s41598-018-21597-2 DOI: https://doi.org/10.1038/s41598-018-21597-2

Rodrigues, D. et al. (2019). Fed-batch production of Saccharomyces cerevisiae L-Asparaginase II by recombinant Pichia pastoris MUTs strain, Frontiers in Bioengineering and Biotechnology, 7(FEB). doi: 10.3389/fbioe.2019.00016. DOI: https://doi.org/10.3389/fbioe.2019.00016

Rodríguez-López, A., Pimentel-Vera, L. N., Espejo-Mojica, A. J., Van Hecke, A., Tiels, P., Tomatsu, S., Callewaert, N., & Alméciga-Díaz, C. J. (2019). Characterization of Human Recombinant N-Acetylgalactosamine-6-Sulfate Sulfatase Produced in Pichia pastoris as Potential Enzyme for Mucopolysaccharidosis IVA Treatment. Journal of Pharmaceutical Sciences, 108(8), 2534–2541. doi:10.1016/j.xphs.2019.03.034 DOI: https://doi.org/10.1016/j.xphs.2019.03.034

Rußmayer, H., Buchetics, M., Gruber, C., Valli, M., Grillitsch, K., & Modarres, G. et al. (2015). Systems-level organization of yeast methylotrophic lifestyle. BMC Biology, 13(1). doi: 10.1186/s12915-015-0186-5 DOI: https://doi.org/10.1186/s12915-015-0186-5

Shen, S. et al. (1998). A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris, Gene, 216(1), 93–102. doi: 10.1016/S0378-1119(98)00315-1. DOI: https://doi.org/10.1016/S0378-1119(98)00315-1

Shen, W. et al. (2016). A novel methanol-free Pichia pastoris system for recombinant protein expression, Microbial Cell Factories. BioMed Central, 15(1), 1–11. doi: 10.1186/s12934-016-0578-4. DOI: https://doi.org/10.1186/s12934-016-0578-4

Shiraishi, K., Oku, M., Uchida, D., Yurimoto, H., & Sakai, Y. (2015). Regulation of nitrate and methylamine metabolism by multiple nitrogen sources in the methylotrophic yeast Candida boidinii. FEMS Yeast Research, fov084. doi:10.1093/femsyr/fov084 DOI: https://doi.org/10.1093/femsyr/fov084

Singh, A. and Narang, A. (2019). The Mut+ strain of Komagataella phaffii (Pichia pastoris) expresses PAOX1 5 and 10 times faster than Muts and Mut− strains: Evidence that formaldehyde or/and formate are true inducers of AOX. doi: 10.1101/573519 DOI: https://doi.org/10.1101/573519

Siverio, J. (2002). Assimilation of nitrate by yeasts. FEMS Microbiology Reviews, 26(3), 277-284. doi:10.1111/j.1574-6976.2002.tb00615.x DOI: https://doi.org/10.1111/j.1574-6976.2002.tb00615.x

Sreekrishna, K., & Kropp, K. E. (1996). Pichia Pastoris, Encyclopedia of Food Microbiology, pp. 1686–1692. doi: 10.1006/rwfm.1999.1260. DOI: https://doi.org/10.1007/978-3-642-79856-6_6

Tanaka, H., Okuno, T., Moriyama, S., Muguruma, M., & Ohta, K. (2004). Acidophilic xylanase from Aureobasidium pullulans: efficient expression and secretion in Pichia pastoris and mutational analysis. Journal Of Bioscience And Bioengineering, 98(5), 338-343. doi:10.1016/s1389-1723(04)00292-0 DOI: https://doi.org/10.1016/S1389-1723(04)00292-0

Taylor, R. C. (2016). Aging and the UPR(ER), Brain Research, 1648, 588–593. doi: 10.1016/j.brainres.2016.04.017. DOI: https://doi.org/10.1016/j.brainres.2016.04.017

Tesar, T., Golias, P., Inotai, A., Kawalec, P., & Wawruch, M. (2019). The impact of implemented regulations on biosimilars in Slovakia. Health Policy And Technology, 8(4), 408-413. doi:10.1016/j.hlpt.2019.09.004 DOI: https://doi.org/10.1016/j.hlpt.2019.09.004

Titorenko, V. I., & Rachubinski, R. A. (2004). The peroxisome: orchestrating important developmental decisions from inside the cell. The Journal of cell biology, 164(5), 641–645. doi:10.1083/jcb.200312081 DOI: https://doi.org/10.1083/jcb.200312081

Tu, Y., Wang, Y., Wang, G., Wu, J., Liu, Y., Wang, S., Jiang, C., & Cai, X. (2013). High-level expression and immunogenicity of a porcine circovirus type 2 capsid protein through codon optimization in Pichia pastoris. Applied Microbiology and Biotechnology, 97(7), 2867–2875. doi:10.1007/s00253-012-4540-z DOI: https://doi.org/10.1007/s00253-012-4540-z

Uhlig, T., & Goll, G. (2017). Reviewing the evidence for biosimilars: key insights, lessons learned and future horizons. Rheumatology, 56(suppl_4), iv49-iv62. doi:10.1093/rheumatology/kex276 DOI: https://doi.org/10.1093/rheumatology/kex276

Vaca González, C. P., Arteaga, L. & Delgado López, N. E. (2019). Magistral drug production in Colombia and other middle-income countries. Nature Biotechnology, 37(3),216–217. doi:10.1038/s41587-019-0044-z DOI: https://doi.org/10.1038/s41587-019-0044-z

Van der Klei, I., Yurimoto, H., Sakai, Y. & Veenhuis, M. (2006). The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochimica Et Biophysica Acta (BBA) - Molecular Cell Research, 1763(12), 1453-1462 doi:10.1016/j.bbamcr.2006.07.016 DOI: https://doi.org/10.1016/j.bbamcr.2006.07.016

Van Dijken, J., Veenhuis, M., Kreger-Van Rij, N., & Harder, W. (1975). Microbodies in methanol-assimilating yeasts. Archives Of Microbiology, 102(1), 41-44. doi:10.1007/bf00428343 DOI: https://doi.org/10.1007/BF00428343

Veenhuis, M., Dijken, J., & Harder, W. (1983). The Significance of Peroxisomes in the Metabolism of One-Carbon Compounds in Yeasts. Advances in Microbial Physiology, 1-82. doi: 10.1016/s0065-2911(08)60384-7 DOI: https://doi.org/10.1016/S0065-2911(08)60384-7

Vogl, T. and Glieder, A. (2013). Regulation of Pichia pastoris promoters and its consequences for protein production, New Biotechnology. Elsevier B.V., 30(4), 385–404. doi: 10.1016/j.nbt.2012.11.010. DOI: https://doi.org/10.1016/j.nbt.2012.11.010

Vogl, T., Fischer, J., Hyden, P., Wasmayer, R., Sturmberger, L., & Glieder, A. (2020). Orthologous promoters from related methylotrophic yeasts surpass expression of endogenous promoters of Pichia pastoris. AMB Express, 10(1). doi:10.1186/s13568-020-00972-1 DOI: https://doi.org/10.1186/s13568-020-00972-1

Vonck, J., Parcej, D., & Mills, D. (2016). Structure of Alcohol Oxidase from Pichia pastoris by Cryo-Electron Microscopy. PLOS ONE, 11(7). doi:10.1371/journal.pone.0159476 DOI: https://doi.org/10.1371/journal.pone.0159476

Waterham, H. R. et al. (1997). Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter, Gene, 186(1), 37–44. doi: 10.1016/S0378-1119(96)00675-0. DOI: https://doi.org/10.1016/S0378-1119(96)00675-0

Weinhandl, K., Winkler, M., Glieder, A., & Camattari, A. (2014). Carbon source dependent promoters in yeasts. Microbial Cell Factories, 13(1), 5. doi:10.1186/1475-2859-13-5 DOI: https://doi.org/10.1186/1475-2859-13-5

Yang, Z. and Zhang, Z. (2018). Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: A review, Biotechnology Advances. Elsevier, 36(1), 182–195. doi: 10.1016/j.biotechadv.2017.11.002. DOI: https://doi.org/10.1016/j.biotechadv.2017.11.002

Yurimoto, H., Kato, N., & Sakai, Y. (2005). Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism. The Chemical Record, 5(6), 367-375. doi:10.1002/tcr.20056 DOI: https://doi.org/10.1002/tcr.20056

Yurimoto, H., Oku, M., & Sakai, Y. (2011). Yeast Methylotrophy: Metabolism, Gene Regulation and Peroxisome Homeostasis. International Journal Of Microbiology, 1-8. doi:10.1155/2011/101298 DOI: https://doi.org/10.1155/2011/101298

Zahrl, R. J., Mattanovich, D. and Gasser, B. (2018). The impact of ERAD on recombinant protein secretion in Pichia pastoris (Syn komagataella spp.) c.0.000630. DOI: https://doi.org/10.1099/mic.0.000630

Zámocký, M., & Koller, F. (1999). Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis. Progress In Biophysics And Molecular Biology, 72(1), 19-66. doi:10.1016/s0079-6107(98)00058-3 DOI: https://doi.org/10.1016/S0079-6107(98)00058-3

Zapata, J., Steiner, R., Bernal, S., & Castillo, J. (2012). Pertinencia de incentivar la competencia en el mercado de medicamentos biotecnológicos en Colombia y su impacto sobre las finanzas del sector de la salud. Retrieved 28 April 2020, from https://www.researchgate.net/publication/241754341_Pertinencia_de_incentivar_la_competencia_en_el_mercado_de_medicamentos_biotecnologicos_en_Colombia_y_su_impacto_sobre_las_finanzas_del_sector_de_la_sa.

Zhang, W., Zhang, T., Wu, S., Wu, M., Xin, F., & Dong, W. (2017). Guidance for engineering of synthetic methylotrophy based on methanol metabolism in methylotrophy. RSC Advances, 7(7), 4083-4091. doi:10.1039/c6ra27038g DOI: https://doi.org/10.1039/C6RA27038G

Zwart, K. B., Veenhuis, M., & Harder, W. (1983). Significance of yeast peroxisomes in the metabolism of choline and ethanolamine. Antonie van Leeuwenhoek, 49(4–5), 369–385. doi:10.1007/BF00399317 DOI: https://doi.org/10.1007/BF00399317

Cómo citar

APA

Rosas Cabrera, J. D. y Díaz Rodríguez, C. A. (2021). Pichia pastoris as a biological platform to produce recombinant proteins: relevance for development of biotechnological products in Colombia. Revista de la Facultad de Ciencias, 10(1), 20–44. https://doi.org/10.15446/revfaccienc.v10n1.86805

ACM

[1]
Rosas Cabrera, J.D. y Díaz Rodríguez, C.A. 2021. Pichia pastoris as a biological platform to produce recombinant proteins: relevance for development of biotechnological products in Colombia. Revista de la Facultad de Ciencias. 10, 1 (ene. 2021), 20–44. DOI:https://doi.org/10.15446/revfaccienc.v10n1.86805.

ACS

(1)
Rosas Cabrera, J. D.; Díaz Rodríguez, C. A. Pichia pastoris as a biological platform to produce recombinant proteins: relevance for development of biotechnological products in Colombia. Rev. Fac. Cienc. 2021, 10, 20-44.

ABNT

ROSAS CABRERA, J. D.; DÍAZ RODRÍGUEZ, C. A. Pichia pastoris as a biological platform to produce recombinant proteins: relevance for development of biotechnological products in Colombia. Revista de la Facultad de Ciencias, [S. l.], v. 10, n. 1, p. 20–44, 2021. DOI: 10.15446/revfaccienc.v10n1.86805. Disponível em: https://revistas.unal.edu.co/index.php/rfc/article/view/86805. Acesso em: 30 jul. 2024.

Chicago

Rosas Cabrera, Juan David, y Carlos Andrés Díaz Rodríguez. 2021. «Pichia pastoris as a biological platform to produce recombinant proteins: relevance for development of biotechnological products in Colombia». Revista De La Facultad De Ciencias 10 (1):20-44. https://doi.org/10.15446/revfaccienc.v10n1.86805.

Harvard

Rosas Cabrera, J. D. y Díaz Rodríguez, C. A. (2021) «Pichia pastoris as a biological platform to produce recombinant proteins: relevance for development of biotechnological products in Colombia», Revista de la Facultad de Ciencias, 10(1), pp. 20–44. doi: 10.15446/revfaccienc.v10n1.86805.

IEEE

[1]
J. D. Rosas Cabrera y C. A. Díaz Rodríguez, «Pichia pastoris as a biological platform to produce recombinant proteins: relevance for development of biotechnological products in Colombia», Rev. Fac. Cienc., vol. 10, n.º 1, pp. 20–44, ene. 2021.

MLA

Rosas Cabrera, J. D., y C. A. Díaz Rodríguez. «Pichia pastoris as a biological platform to produce recombinant proteins: relevance for development of biotechnological products in Colombia». Revista de la Facultad de Ciencias, vol. 10, n.º 1, enero de 2021, pp. 20-44, doi:10.15446/revfaccienc.v10n1.86805.

Turabian

Rosas Cabrera, Juan David, y Carlos Andrés Díaz Rodríguez. «Pichia pastoris as a biological platform to produce recombinant proteins: relevance for development of biotechnological products in Colombia». Revista de la Facultad de Ciencias 10, no. 1 (enero 1, 2021): 20–44. Accedido julio 30, 2024. https://revistas.unal.edu.co/index.php/rfc/article/view/86805.

Vancouver

1.
Rosas Cabrera JD, Díaz Rodríguez CA. Pichia pastoris as a biological platform to produce recombinant proteins: relevance for development of biotechnological products in Colombia. Rev. Fac. Cienc. [Internet]. 1 de enero de 2021 [citado 30 de julio de 2024];10(1):20-44. Disponible en: https://revistas.unal.edu.co/index.php/rfc/article/view/86805

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

992

Descargas

Los datos de descargas todavía no están disponibles.