FLAT LIKELIHOODS: THREE-PARAMETER WEIBULL MODEL CASE
VEROSIMILITUDES PLANAS: CASO DEL MODELO WEIBULL DE TRES PARÁMETROS
DOI:
https://doi.org/10.15446/rev.fac.cienc.v11n2.98450Palabras clave:
Flat likelihood function, threshold parameter, embedded models, GEV distribution, likelihood contours, profile likelihood function (en)Función de verosimilitud plana, parámetro umbral, modelo empotrado, contornos de verosimilitud, función de verosimilitud perfil, Distribución de VEG (es)
Descargas
Referencias
Barnard, G. A. (1967). The use of the likelihood function in statistical practice. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 27--40.
Barnard, G. A. & Sprott D. A. (1983). Likelihood. In: Kotz S, Johnson NL (eds) Encyclopedia of statistical science, Vol 4. Wiley, New York, pp 639--644.
Barndorff-Nielsen, O. E. & Cox, D. R. (1994). Inference and asymptotics. Chapman & Hall/CRC. Boca Raton. DOI: https://doi.org/10.1007/978-1-4899-3210-5
Berger, J. O., Liseo, B. & Wolpert, R. L. (1999). Integrated likelihood methods for eliminating nuisance parameters. Statistical Science, 14(1), 1-28. DOI: https://doi.org/10.1214/ss/1009211804
Bolívar-Cimé, A., Díaz-Francés, E. & Ortega, J. (2015). Optimality of profile likelihood intervals for quantiles of extreme value distributions: application to environmental disasters. Hydrological Sciences Journal, 60(4), 651-670. DOI: https://doi.org/10.1080/02626667.2014.897405
Breusch, T. S., Robertson, J. C. & Welsh, A. H. (1997). The emperor's new clothes: a critique of the multivariate t regression model. Statistica Neerlandica, 51(3), 269-286. DOI: https://doi.org/10.1111/1467-9574.00055
Catchpole, E. A. & Morgan, B. J. (1997). Detecting parameter redundancy. Biometrika, 84(1), 187-196. DOI: https://doi.org/10.1093/biomet/84.1.187
Cheng, R. C. H. & Iles, T. C. (1990). Embedded models in three-parameter distributions and their estimation. Journal of the Royal Statistical Society. Series B (Methodological), 52(1), 135-149. DOI: https://doi.org/10.1111/j.2517-6161.1990.tb01777.x
Cole, S. R., Chu, H. & Greenland, S. (2013). Maximum likelihood, profile likelihood, and penalized likelihood: a primer. American Journal of Epidemiology, 179(2), 252-260. DOI: https://doi.org/10.1093/aje/kwt245
Cousineau, D., Goodman, V. W. & Shiffrin, R. M. (2002). Extending statistics of extremes to distributions varying in position and scale and the implications for race models. Journal of Mathematical Psychology, 46(4), 431-454. DOI: https://doi.org/10.1006/jmps.2001.1399
De Haan, L. (1990). Fighting the arch-enemy with mathematics. Statistica neerlandica, 44(2), 45-68. DOI: https://doi.org/10.1111/j.1467-9574.1990.tb01526.x
Deng, B., Jiang, D. & Gong, J. (2018). Is a three-parameter Weibull function really necessary for the characterization of the statistical variation of the strength of brittle ceramics?. Journal of the European Ceramic Society, 38(4), 2234-2242. DOI: https://doi.org/10.1016/j.jeurceramsoc.2017.10.017
El Adlouni, S., Ouarda, T. B., Zhang, X., Roy, R. & Bobée, B. (2007). Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resources Research, 43(3), W03410. DOI: https://doi.org/10.1029/2005WR004545
Elmahdy, E. E. & Aboutahoun, A. W.(2013). A new approach for parameter estimation of finite Weibull mixture distributions for reliability modeling. Applied Mathematical Modelling, 37(4), 1800-1810. DOI: https://doi.org/10.1016/j.apm.2012.04.023
Elmahdy, E. E. (2015). A new approach for Weibull modeling for reliability life data analysis. Applied Mathematics and computation, 250, 708-720. DOI: https://doi.org/10.1016/j.amc.2014.10.036
Farcomeni, A. & Tardella, L. (2012). Identifiability and inferential issues in capture-recapture experiments with heterogeneous detection probabilities. Electronic Journal of Statistics, 6, 2602-2626. DOI: https://doi.org/10.1214/12-EJS758
Frery, A. C., Cribari-Neto, F. & De Souza, M. O. (2004). Analysis of minute features in speckled imagery with maximum likelihood estimation. EURASIP Journal on Advances in Signal Processing, 2004(16), 2476-2491. DOI: https://doi.org/10.1155/S111086570440907X
Ghosh, M., Datta, G. S., Kim, D. & Sweeting, T. J. (2006). Likelihood-based inference for the ratios of regression coefficients in linear models. Annals of the Institute of Statistical Mathematics, 58(3), 457-473. DOI: https://doi.org/10.1007/s10463-005-0027-3
Green, E. J., Roesch, F. A., Smith, A. F. & Strawderman, W. E. (1994). Bayesian Estimation for the Three-Parameter Weibull Distribution with Tree Diameter Data. Biometrics, 50(1), 254-269. DOI: https://doi.org/10.2307/2533217
Harter, H. L. & Moore, A. H. (1966). Local-maximum-likelihood estimation of the parameters of three-parameter lognormal populations from complete and censored samples. Journal of the American Statistical Association, 61(315), 842-851. DOI: https://doi.org/10.1080/01621459.1966.10480911
Hirose, H. & Lai, T. L. (1997). Inference from grouped data in three-parameter Weibull models with applications to breakdown-voltage experiments. Technometrics, 39(2), 199-210. DOI: https://doi.org/10.1080/00401706.1997.10485085
Khan, H. M., Albatineh, A., Alshahrani, S., Jenkins, N. & Ahmed, N. U. (2011). Sensitivity analysis of predictive modeling for responses from the three-parameter Weibull model with a follow-up doubly censored sample of cancer patients. Computational Statistics & Data Analysis, 55(12), 3093-3103. DOI: https://doi.org/10.1016/j.csda.2011.05.017
Kalbfleisch, J. G. (1985). Probability and Statistical Inference, Vol. 2. Springer-Verlag. New York. DOI: https://doi.org/10.1007/978-1-4612-1096-2
Koutsoyiannis, D. (2004). Statistics of extremes and estimation of extreme rainfall: I. Theoretical investigation/Statistiques de valeurs extrêmes et estimation de précipitations extrêmes: I. Recherche théorique. Hydrological Sciences Journal, 49(4). DOI: https://doi.org/10.1623/hysj.49.4.575.54430
Kreutz, C., Raue, A., Kaschek, D. & Timmer, J. (2013). Profile likelihood in systems biology. The FEBS journal, 280(11), 2564-2571. DOI: https://doi.org/10.1111/febs.12276
Li, R. & Sudjianto, A. (2005). Analysis of computer experiments using penalized likelihood in Gaussian Kriging models. Technometrics, 47(2), 111-120. DOI: https://doi.org/10.1198/004017004000000671
Lima, V. M. & Cribari-Neto, F. (2019). Penalized maximum likelihood estimation in the modified extended Weibull distribution. Communications in Statistics-Simulation and Computation, 48(2), 334-349. DOI: https://doi.org/10.1080/03610918.2017.1381735
Liu, S., Wu, H. & Meeker, W. Q. (2015). Understanding and addressing the unbounded likelihood'' problem. The American Statistician}, 69(3), 191-200. DOI: https://doi.org/10.1080/00031305.2014.1003968
Martins, E. S. & Stedinger, J. R. (2000). Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resources Research, 36(3), 737-744. DOI: https://doi.org/10.1029/1999WR900330
Martins, E. S. & Stedinger, J. R. (2001). Generalized maximum likelihood Pareto-Poisson estimators for partial duration series. Water Resources Research, 37(10), 2551-2557. DOI: https://doi.org/10.1029/2001WR000367
Montoya, J. A. (2008). La verosimilitud perfil en la Inferencia Estadística. Centro de Investigación en Matemáticas, A. C., Guanajuato, Gto., México.
Montoya, J. A., Díaz-Francés, E. & Sprott, D.A. (2009). On a criticism of the profile likelihood function. Statistical Papers, 50(1), 195-202. DOI: https://doi.org/10.1007/s00362-007-0056-5
Murphy, S. A. & Van Der Vaart, A. W. (2000). On profile likelihood. Journal of the American Statistical Association, 95(450), 449-465. DOI: https://doi.org/10.1080/01621459.2000.10474219
Pawitan, Y. (2001). In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford University Press. New York.
Pewsey, A. (2000). Problems of inference for Azzalini's skewnormal distribution. Journal of Applied Statistics, 27(7), 859-870. DOI: https://doi.org/10.1080/02664760050120542
Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmüller, U. & Timmer, J. (2009). Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics, 25(15), 1923-1929. DOI: https://doi.org/10.1093/bioinformatics/btp358
Serfling, R. J. (2002). Approximation Theorems of Mathematical Statistics. John Wiley & Sons. New York.
Silva, H. P. T. N. & Peiris, T. S. G.(2017). Statistical modeling of weekly rainfall: a case study in Colombo city in Sri Lanka. Proceedings of the Engineering Research Conference (MERCon), Moratuwa, IEEE, 241-246. DOI: https://doi.org/10.1109/MERCon.2017.7980489
Smith, R. L. & Naylor, J. C. (1987). A comparison of maximum likelihood and Bayesian estimators for the three parameter Weibull distribution. Journal of the Royal Statistical Society, 36(3), 358--369. DOI: https://doi.org/10.2307/2347795
Sprott, D. A. (2000). Statistical inference in science. Springer-Verlag. New York.
Sundberg, R. (2010). Flat and multimodal likelihoods and model lack of fit in curved exponential families. Scandinavian Journal of Statistics, 37(4), 632-643. DOI: https://doi.org/10.1111/j.1467-9469.2010.00703.x
Tsionas, E. G. (2001). Likelihood and Posterior Shapes in Johnson's System. Sankhya: The Indian Journal of Statistics, Series B, 63(1), 3-9.
Tumlinson, S. E. (2015). On the non-existence of maximum likelihood estimates for the extended exponential power distribution and its generalizations. Statistics & Probability Letters, 107, 111-114. DOI: https://doi.org/10.1016/j.spl.2015.08.009
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2022 Revista de la Facultad de Ciencias

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores o titulares del derecho de autor de cada artículo confieren a la Revista de la Facultad de Ciencias de la Universidad Nacional de Colombia una autorización no exclusiva, limitada y gratuita sobre el artículo que una vez evaluado y aprobado se envía para su posterior publicación ajustándose a las siguientes características:
1. Se remite la versión corregida de acuerdo con las sugerencias de los evaluadores y se aclara que el artículo mencionado se trata de un documento inédito sobre el que se tienen los derechos que se autorizan y se asume total responsabilidad por el contenido de su obra ante la Revista de la Facultad de Ciencias, la Universidad Nacional de Colombia y ante terceros.
2. La autorización conferida a la revista estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo de la Revista de la Facultad de Ciencias en el Sistema Open Journal Systems y en la página principal de la revista (https://revistas.unal.edu.co/index.php/rfc/index), así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.
3. Los autores autorizan a la Revista de la Facultad de Ciencias de la Universidad Nacional de Colombia para publicar el documento en el formato en que sea requerido (impreso, digital, electrónico o cualquier otro conocido o por conocer) y autorizan a la Revista de la Facultad de Ciencias para incluir la obra en los índices y buscadores que estimen necesarios para promover su difusión.
4. Los autores aceptan que la autorización se hace a título gratuito, por lo tanto renuncian a recibir emolumento alguno por la publicación, distribución, comunicación pública y cualquier otro uso que se haga en los términos de la presente autorización.
5. Todos los contenidos de la Revista de la Facultad de Ciencias, están publicados bajo la Licencia Creative Commons Atribución – No comercial – Sin Derivar 4.0.
MODELO DE CARTA DE PRESENTACIÓN y CESIÓN DE DERECHOS DE AUTOR