Published

2024-01-01

ALTERNATIVAS PARA EL MEJORAMIENTO DE BIOCOMBUSTIBLES GASEOSOS PARA MOTORES

ALTERNATIVES FOR IMPROVING GASEOUS BIOFUELS IN ENGINES

DOI:

https://doi.org/10.15446/rev.fac.cienc.v13n1.109222

Keywords:

Biogás, syngas, gas natural, purificación, motor de combustión (es)

Authors

La generación del gas a partir de la biomasa se considera como la gran opción en sustitución el gas convencional (gas natural y gas licuado de petróleo). Ya sea el biogás o el syngas (gas de síntesis) a partir de residuos, en donde no tienen efectos dañinos en el uso de la tierra, puesto que los procesos de cultivo son innecesarios, el biogás puede ser utilizado sin un tratamiento de purificación sobre todo para usarlo en zonas rurales en donde no se justifica una gran inversión en los tratamientos. Diversas investigaciones han apostado por mejorar las propiedades de combustión del biogás y el syngas, usando una serie de estrategias entre las cuales se encuentra agregar O2, H2, GN, CH4 y EGR, también se ha propuesto como alternativa el empleo de súper-cargadores, quemadura magra y la mejora de la calidad del biogás a través de su purificación, en este último caso tiene algunas aplicaciones como lo es bio-CNG en vehículos de transporte, toda una realidad en algunos países europeos.   

The generation of gas from biomass is considered as the great option to replace conventional gas (natural gas and liquefied petroleum gas). Either biogas or syngas (synthesis gas) from waste, where they have no harmful effects on land use, since cultivation processes are unnecessary, biogas can be used without a purification treatment especially for use in rural areas where a large investment in treatments is not justified. Several studies have focused on improving the combustion properties of biogas and syngas, using a series of strategies including adding O2, H2, GN, CH4 and EGR, the use of super-gases has also been proposed as an alternativechargers, lean burn and improving the quality of biogas through its purification, in the latter case has some applications such as bio-CNG in transport vehicles, a reality in some European countries.

References

Açıkgöz, B., Çelik, C., Soyhan, H.S., Gökalp, B. & Karabağ, B.(2015). Emission characteristics of an hydrogen-CH 4 fuelled spark ignition engine. Fuel, 159, 298-307. DOI: https://doi.org/10.1016/j.fuel.2015.06.043

Appels, L., Lauwers, J., Degreve, J., Helsen, L., Lievens, B., Willems, K., Impe, J. V. & Dewil, R.(2011). Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sustain Energy Rev, 15(9), 4295-4301. DOI: https://doi.org/10.1016/j.rser.2011.07.121

Arroyo, J., Moreno, F., Muñoz, M., Monné, C. & Bernal, N.(2014). Combustion behavior of a spark ignition engine fueled with synthetic gases derived from biogas. Fuel, 117, 50-58. DOI: https://doi.org/10.1016/j.fuel.2013.09.055

Arroyo, J., Moreno, F., Muñoz, M. & Monné, C.(2015). Experimental study of ignition timing and supercharging effects on a gasoline engine fueled with synthetic gases extracted from biogas. Energ Convers Manag, 97, 196-211. DOI: https://doi.org/10.1016/j.enconman.2015.03.061

Asam, Z. Z., Poulsen, T.G., Nizami, A. S., Rafique, R., Kiely, G. & Murphy, J. D.(2015). How can we improve biomethane production per unit of feedstock in biogas plants. Appl. Energy, 88(6), 2013-2018. DOI: https://doi.org/10.1016/j.apenergy.2010.12.036

Azimov, U., Tomita, E., Kawahara, N. & Harada, Y.(2011). Effect of syngas composition on combustion and exhaust emission characteristics in a pilot ignited dual-fuel engine operated in PREMIER combustion mode. Int J Hydrogen Energy, 36(18), 11985-11996. DOI: https://doi.org/10.1016/j.ijhydene.2011.04.192

Babu, M. K. G. & Subramanian, K. A.(2013). Alternative transportation fuels, utilisation in combustion engines. CRC Press, Taylor Francis Group https://doi.org/10.1201/b14995 DOI: https://doi.org/10.1201/b14995

Bari, S.(1996). Effect of carbon dioxide on the performance of biogas /diesel dual-fuel engine. Renewable Energy, 9(1-4), 1007-1010. https://doi.org/10.1016/0960-1481(96)88450-3 DOI: https://doi.org/10.1016/0960-1481(96)88450-3

Barik, D., Murugan, S., Samal, S. & Sivaram, N.M.(2017). Combined effect of compression ratio and diethyl ether(DEE) port injection on performance and emission characteristics of a DI diesel engine fueled with upgraded biogas(UBG)-biodiesel dual fuel. Fuel, 209, 339-349. https://doi.org/10.1016/j.fuel.2017.08.015 DOI: https://doi.org/10.1016/j.fuel.2017.08.015

Byun, J. S. & Park, J.(2015). Predicting the performance and exhaust NOx emissions of a spark-ignition engine generator fuelled with methane based biogas es containing various amounts of CO2. J Nat Gas Sci Eng, 22, 196-202. https://doi.org/10.1016/j.jngse.2014.11.031 DOI: https://doi.org/10.1016/j.jngse.2014.11.031

Cacua, K., Amell, A. & Cadavid, F.(2012). Effects of oxygen enriched air on the operation and performance of a diesel-biogas dual fuel engine. Biomass Bioenergy, 45, 159-167. https://doi.org/10.1016/j.biombioe.2012.06.003 DOI: https://doi.org/10.1016/j.biombioe.2012.06.003

Cameretti, M.C. & Cappiello, A., De Robbio, R., Tuccillo, R.(2020). Comparison between Hydrogen and Syngas Fuels in an Integrated Micro Gas Turbine/Solar Field with Storage. Energies, 13, 4764, 1-24 https://doi:10.3390/en13184764. DOI: https://doi.org/10.3390/en13184764

Cavenati, S., Grande, C. & Rodrigues, A.(2005). Upgrade of methane from landfill gas by pressure swing adsorption. Energy Fuels, 19(6), 2545-2555. https://doi.org/10.1021/ef050072h DOI: https://doi.org/10.1021/ef050072h

Chandra, R., Vijay, V. K., Subbarao, P. M. V. & Khura, T. K.(2011). Performance evaluation of a constant speed IC engine on CNG, methane enriched biogasaand biogas. Appl Energy, 88(11), 3969-3977. https://doi.org/10.1016/j.apenergy.2011.04.032 DOI: https://doi.org/10.1016/j.apenergy.2011.04.032

Chandra, R., Vijay, V. K., Subbarao, P. M. V. & Khura, T. K.(2012). Production of methane from anaerobic digestion of jatropha and pongamia oil cakes, Appl. Energy, 93, 148-159. https://doi.org/10.1016/j.apenergy.2010.10.049 DOI: https://doi.org/10.1016/j.apenergy.2010.10.049

Chraplewska, N., Duda, K. & Meus, M.(2011). Evaluation of usage brown gas generator for aided admission of diesel engine with fermentative biogas and producer gas. Journal of KONES Powertrain and Transport, 18(3), 53-60.

Chen, L., Song, P., Zeng, W., Zhang, J., Feng, C. & Ma, H.(2016). Exhaust emission characteristics of gaseous low-temperature biomass fuel in spark-ignition engine. Applied Thermal Engineering, 108, 1-10. https://doi.org/10.1016/j.applthermaleng.2016.07.115 DOI: https://doi.org/10.1016/j.applthermaleng.2016.07.115

Chen, X., Vinh-Thang, H., Ramirez, A. A., Rodrigue, D. & Kaliaguine, S.(2015). Membrane gas separation technologies for biogas upgrading. RSC Adv, 5(31), 24399-24448. http://dx.doi.org/10.1039/C5RA00666J. DOI: https://doi.org/10.1039/C5RA00666J

Chen, L., Long, W. & Song, P.(2017). Combustion characteristics of an SI engine fueled with biogas fuel. AIP Conference Proceedings, 1834(1), 1-4. https://doi.org/10.1063/1.4981596 DOI: https://doi.org/10.1063/1.4981596

Dasappa, S. & Sridhar, H.V.(2013). Performance of diesel engine in a dual fuel mode using producer gas for electricity power generation. Int J Sustain energy, 32(3), 153-68, http://dx.doi.org/10.1080/14786451.2011.605945. DOI: https://doi.org/10.1080/14786451.2011.605945

Duarte, J., Amador, G., Garcia, J., Fontalvo, A., Vasquez R., Sanjuan, M. & Gonzalez, A.(2014). Auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels, Energy, 71, 137-147, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2014.04.040. DOI: https://doi.org/10.1016/j.energy.2014.04.040

Elberry, A. M., Thakur, J., Santasalo-Aarnio, A. & Larmi, M.(2021). Large-scale compressed hydrogen storage as part of renewable electricity storage systems, International Journal of Hydrogen Energy, 46(29), 15671-15690, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2021.02.080. DOI: https://doi.org/10.1016/j.ijhydene.2021.02.080

Elfattah, S. T. A., Eldrainy, Y. A. & Attia, A.(2016). Upgrade Egyptian biogas to meet the natural gas network quality standard. Alexandria Engineering Journal 55(3), 2279-2283. https://doi.org/10.1016/j.aej.2016.05.015. DOI: https://doi.org/10.1016/j.aej.2016.05.015

European Commission(2020). Directorate-General for Maritime Affairs and Fisheries, Directorate-General for Mobility and Transport, Joint Research Centre, State of the art on alternative fuels transport systems in the European Union: 2020 update, Publications Office, https://data.europa.eu/doi/10.2771/29117

Faria, M. M., Bueno, J., Ayad, S. M. & Belchior, C.R.(2017). Thermodynamic simulation model for predicting the performance of spark ignition engines using biogas as fuel. Energy Conversion and Management, 149, 1096-1108. https://doi.org/10.1016/j.enconman.2017.06.045 DOI: https://doi.org/10.1016/j.enconman.2017.06.045

Farzaneh-Gord, M. & Branch, S.(2011). Real and ideal gas thermodynamic analysis of single reservoir filling process of natural gas vehicle cylinders. J Theor Appl Mech, 41(12), 21-36.

Fernandez, M., Ramirez, M., Perez, R. M., Gomez, J. M. & Cantero, D.(2013). Hydrogen sulfide removal from biogas by ananoxic biotrickling filter packed with pall rings. Chem Eng J, 456-463. https://doi.org/10.1016/j.cej.2013.04.020 DOI: https://doi.org/10.1016/j.cej.2013.04.020

Gomes, V. G. & Yee, K. W. K.(2002). Pressure swing adsorption for carbon dioxide sequestration from exhaust gases. Sep Purif Technol, 28, 161-171. http://dx.doi.org/10.1016/S1383-5866(02)00064-3. DOI: https://doi.org/10.1016/S1383-5866(02)00064-3

Golimowski, W., Krzaczek, P., Marcinkowski, D., Gracz, W. & Wałowski, G.(2019). Impact of Biogas and Waste Fats Methyl Esters on NO, NO2, CO, and PM Emission by Dual Fuel Diesel Engine. Sustainability, 11, 1799. https://doi.org/10.3390/su11061799 DOI: https://doi.org/10.3390/su11061799

Hagos, F. Y., Aziz, A. R. A. & Sulaiman, S. A.(2014). Trends of Syngas as a Fuel in Internal Combustion Engines. Advances in Mechanical Engineering, 6, https://doi.org/10.1155/2014/401587 DOI: https://doi.org/10.1155/2014/401587

Hagos, F. Y., Aziz, A. R. A. & Sulaiman, S. A.(2014a). Syngas(H2/CO) in a spark-ignition directinjection engine. Part 1: combustion, performance and emissions comparison with CNG. Int J Hydrog Energy, 39, 17884-17895. https://doi.org/10.1016/j.ijhydene.2014.08.141 DOI: https://doi.org/10.1016/j.ijhydene.2014.08.141

Hagos, F., Aziz, A. A. R., Sulaiman, S., Firmansyah & Mamat, R.(2017). Effect of fuel injection timing of hydrogen rich syngas augmented with methane in direct-injection spark-ignition engine. International Journal of Hydrogen Energy, 42(37), 23846-23855. https://doi.org/10.1016/j.ijhydene.2017.03.091 DOI: https://doi.org/10.1016/j.ijhydene.2017.03.091

Hagos, F., Aziz, A. A. R., Sulaiman, S. A. & Mahgoub, K. M.(2016). Low and Medium Calorific Value Gasification Gas Combustion in IC Engines. In Developments in Combustion Technology IntechOpen https://doi.org/10.5772/64459 DOI: https://doi.org/10.5772/64459

Hayes, T. D., Issacson, H. R., Pfeffer, J. T. & Liu, Y. M.(1990). In situ methane enrichment in anaerobic digestion. Biotechnol Bioeng, 35(1), 73-86. DOI: 10.1002/bit.260350111 DOI: https://doi.org/10.1002/bit.260350111

Hernández, N. M. & Villanueva, E. P.(2018). Production, Purification and Utilization of Biogas as Fuel For Internal Combustion Engine. AIP Conference Proceedings 1941, 020009, Engineering International Conference, 1-11. https://doi.org/10.1063/1.5028067 DOI: https://doi.org/10.1063/1.5028067

Hernández, J. J., Lapuerta, M. & Barba, J.(2015). Effect of partial replacement of diesel or biodiesel with gas from biomass gasification in a diesel engine. Energy, 89, 148-157. https://doi.org/10.1016/j.energy.2015.07.050. DOI: https://doi.org/10.1016/j.energy.2015.07.050

Hilaire, F., Basset, E., Bayard, R., Gallardo, M., Thiebaut, D. & Vial, J.(2017). Comprehensive two-dimensional gas chromatography for biogas and biomethane analysis. Journal of Chromatography A 1524 (17), 222-232 https://doi.org/10.1016/j.chroma.2017.09.071. DOI: https://doi.org/10.1016/j.chroma.2017.09.071

Hinton, N. & Stone, R.(2014). Laminar burning velocity measurements of methane and carbon dioxide mixtures(biogas) over wide ranging temperatures and pressures. Fuel, 116, 743-750. https://doi.org/10.1016/j.fuel.2013.08.069 DOI: https://doi.org/10.1016/j.fuel.2013.08.069

Hosseini, S.E. & Wahid, M.(2014). Development of Biogas Combustion in Combined Heat and Power Generation. Renewable and Sustainable Energy Reviews, 40, 868-875. https://doi.org/10.1016/j.rser.2014.07.204 DOI: https://doi.org/10.1016/j.rser.2014.07.204

Ilbas, M. & Karyeyen, S.(2015). A numerical study on combustion behaviours of hydrogen-enriched low calorific value coal gases. International Journal of Hydrogen Energy, 40(44), 15218-15226. https://doi.org/10.1016/j.ijhydene.2015.04.141 DOI: https://doi.org/10.1016/j.ijhydene.2015.04.141

Jena, S. P. & Acharya, S. K.(2019). Investigation on influence of thermal barrier coating on diesel engine performance and emissions in dual-fuel mode using upgraded biogas. Sustain Environ Res 29(24). https://doi.org/10.1186/s42834-019-0025-4 DOI: https://doi.org/10.1186/s42834-019-0025-4

Jeong, C., Kim, T., Lee, K., Song, S. & Chun, K.M.(2009). Generating efficiency and emissions of a spark-ignition gas engine generator fuelled with biogas-hydrogen blends, International Journal of Hydrogen Energy, 34(23), 9620-9627, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2009.09.099. DOI: https://doi.org/10.1016/j.ijhydene.2009.09.099

Ji, C., Su, T., Wang, S., Zhang, B., Yu, M. & Cong, X.(2016). Effect of hydrogen addition on combustion and emissions performance of a gasoline rotary engine at part load and stoichiometric conditions. Energy Conversion and Management, 121, 272-280. https://doi.org/10.1016/j.enconman.2016.05.040 DOI: https://doi.org/10.1016/j.enconman.2016.05.040

Jung, C.J., Park, J. & Song, S.(2015). Performance and NOx emissions of a biogas-fueled turbocharged internal combustion engine, Energy, 86, 186-195. https://doi.org/10.1016/j.energy.2015.03.122 DOI: https://doi.org/10.1016/j.energy.2015.03.122

Kadam, R. & Panwar, N. L.(2017). Recent advancement in biogas enrichment and its applications. Renewable and Sustainable Energy Reviews, 73, 892-903. https://doi.org/10.1016/j.rser.2017.01.167 DOI: https://doi.org/10.1016/j.rser.2017.01.167

Kan, X., Zhou, D., Yang, W. M., Zhai, X. & Wang, C.(2018). An investigation on utilization of biogas and syngas produced from biomass waste in premixed spark ignition engine. Applied Energy, 212, 210-222. https://doi.org/10.1016/j.apenergy.2017.12.037 DOI: https://doi.org/10.1016/j.apenergy.2017.12.037

Kapdi, S. S., Vijay, V. K., Rajesh, S. K. & Prasad, R.(2005). Biogas scrubbing, compression and storage: perspective and prospectus in Indian Context. Renew Energy, 30(8), 1195-1202. http://dx.doi.org/10.1016/j.renene.2004.09.012 DOI: https://doi.org/10.1016/j.renene.2004.09.012

Karim, G.(2003). Hydrogen as a spark ignition engine fuel. Int J Hydrogen Energy, 28(5), 569-577. https://doi.org/10.1016/S0360-3199(02)00150-7 DOI: https://doi.org/10.1016/S0360-3199(02)00150-7

Khatri, N. & Khatri, K. K.(2020). Hydrogen enrichment on diesel engine with biogas in dual fuel mode. International Journal of Hydrogen Energy, 45(11), 7128-7140. ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2019.12.167. DOI: https://doi.org/10.1016/j.ijhydene.2019.12.167

Kim, Y., Kawahara, N., Tsuboi, K. & Tomita, E.(2016). Combustion characteristics and NOX emissions of biogas fuels with various CO$_{2 $ contents in a micro co-generation spark-ignition engine. Applied Energy, 182, 539-547. https://doi.org/10.1016/j.apenergy.2016.08.152 DOI: https://doi.org/10.1016/j.apenergy.2016.08.152

Kirti, M., Gosai, D. C. & Shah, A.V.(2017). Application of biogas in I.C engine: A review. International Journal of Advance Research in Science and Engineering, 6(01), 122-127.

Korakianitis, T., Namasivayam, A. M. & Crookes, R.J.(2011). Natural-gas fueled spark-ignition(SI) and compression-ignition(CI) engine performance and emissions. Progress in Energy and Combustion Science, 37(1), 89-112, https://doi.org/10.1016/j.pecs.2010.04.002 DOI: https://doi.org/10.1016/j.pecs.2010.04.002

Kovacs, V. B. & Torok, A.(2010). Investigation on transport related biogas utilization. Transport, 25(1), 77-80, DOI: 10.3846/transport.2010.10 DOI: https://doi.org/10.3846/transport.2010.10

Kukoyi, T., Muzenda, E. & Mashamba, A.(2015). Biomethane and Bioethanol as alternative transport fuels, 7th International Conference on Latest Trends in Engineering Technology(ICLTET'2015) Nov. 26-27, 2015 Irene, Pretoria(South Africa). http://dx.doi.org/10.15242/IIE.E1115054 DOI: https://doi.org/10.15242/IIE.E1115054

Lee, J.A.(2010). Study on Performance and Emissions of a 4-stroke IC Engine Operating on Landfill Gas with the Addition of H2, CO and Syngas. New York: Columbia University DOI: https://doi.org/10.1115/NAWTEC18-3565

Lee, K., Kim, T., Cha, H., Song, S. & Chun, K.M.(2010a). Generating efficiency and NOx emissions of a gas engine generator fueled with a biogas-hydrogen blend and using an exhaust gas recirculation system. International Journal of Hydrogen Energy, 35(11): 5723-30. https://doi.org/10.1016/j.ijhydene.2010.03.076 DOI: https://doi.org/10.1016/j.ijhydene.2010.03.076

Lee, S., Park, S., Kim, C., Kim, Y., Kim & Park, C.(2014). Comparative study on EGR and lean burn strategies employed in an SI engine fueled by low calorific gas. Applied Energy,(129), 10-16. https://doi.org/10.1016/j.apenergy.2014.04.082 DOI: https://doi.org/10.1016/j.apenergy.2014.04.082

Li, W., Dai, Y., Ma, L., Hao H., Lu, H., Albinson, R. & Li, Z.(2015). Oil-saving pathways until 2030 for road freight transportation in China based on a cost-optimization model. Energy, 86:369-84. https://doi.org/10.1016/j.energy.2015.04.033 DOI: https://doi.org/10.1016/j.energy.2015.04.033

Li, J., Huang, H., Huhetaoli, Osaka, Y., Bai, Y., Kobayashi, N. & Chen, Y.(2017). Combustion and Heat Release Characteristics of Biogas under Hydrogen-and Oxygen-Enriched Condition. Energies, 10, 1200. https://doi.org/10.3390/en10081200 DOI: https://doi.org/10.3390/en10081200

Lilik, G., Zhang, H. & Herreros J.(2010). Hydrogen assisted diesel combustion. Int J Hydrogen Energy, 35, 4382-98. http://dx.doi.org/10.1016/j.ijhydene.2010.01.105. DOI: https://doi.org/10.1016/j.ijhydene.2010.01.105

Lim C, Kim D, Song C, Kim J, Han J & Cha JS.(2015). Performance and emission characteristics of a vehicle fueled with enriched biogas and natural gases. Appl Energy, 139, 17-29. http://dx.doi.org/10.1016/j.apenergy.2014.10.084. DOI: https://doi.org/10.1016/j.apenergy.2014.10.084

Lindeboom, R., Fermoso, F., Weijma, J., Zagt, K. & Van, Lier, J.(2011). Autogenerative high pressure digestion: anaerobic digestion and biogas upgrading in a single step reactor system. Water Sci Technol, 64(3), 647-53. DOI: https://doi.org/10.2166/wst.2011.664

Maizonnasse, M., Plante, J.-S., Oh, D. & Laflamme, C.(2013). Investigation of the degradation of a low-cost untreated biogas engine using preheated biogas with phase separation for electric power generation. Renewable Energy 55, 501-513. https://doi.org/10.1016/j.renene.2013.01.006. DOI: https://doi.org/10.1016/j.renene.2013.01.006

Makareviciene, V., Sendzikiene, E., Pukalskas, S., Rimkus, A. & Vegneris, R.(2013). Performance and emission characteristics of biogas used in diesel engine operation. Energy Conversion and Management, 75, 224-33. https://doi.org/10.1016/j.enconman.2013.06.012 DOI: https://doi.org/10.1016/j.enconman.2013.06.012

Mamilla, V., Gopinath, V., Rao, C. V. & Rao, L.(2011). Performance and emission characteristics of 4 stroke petrol engine fueled with biogas / l.p.g blends. International Journal of Advanced Engineering Technology II(I), 209-213.

Marculescu, C., Cenuşă, V. & Alexe, F.(2016). Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines, Waste Management, 47, Part A, 133-140, ISSN 0956-053X, https://doi.org/10.1016/j.wasman.2015.06.043 DOI: https://doi.org/10.1016/j.wasman.2015.06.043

Martínez, J., Mahkamov, K., Andrade, R. Lora, E.(2012). Syngas production in downdraft biomass gasifiers and its application using internal combustion engines. Renewable Energy, 38(1), 1-9. https://doi.org/10.1016/j.renene.2011.07.035 DOI: https://doi.org/10.1016/j.renene.2011.07.035

Montoya, J. P. G., Arrieta, A. A. A. & Lopez, J. F. Z.(2015). Spark ignition engine performance and emissions in a high compression engine using biogas and methane mixtures without knock occurrence. Therm. Sci. 19, 1919-1930. DOI: https://doi.org/10.2298/TSCI140829119G

Molino, A., Migliori, M., Ding, Y., Bikson, B., Giordano, G. & Braccio, G.(2013). Biogas upgrading via membrane process: modelling of pilot plant scale and the end uses for the grid injection. Fuel, 107, 585-592. http://dx.doi.org/10.1016/j.fuel.2012.10.058. DOI: https://doi.org/10.1016/j.fuel.2012.10.058

Mustafi, N. N., Raine, R. R. & Verhelst, S.(2013). Combustion and emissions characteristics of a dual fuel engine operated on alternative gaseous fuels. Fuel, 109, 669-678. http://dx.doi.org/10.1016/j.fuel.2013.03.007. DOI: https://doi.org/10.1016/j.fuel.2013.03.007

Nadaleti, W. & Przybyla, G.(2018). Emissions and performance of a spark-ignition gas engine generator operating with hydrogen-rich syngas, methane and biogas blends for application in Southern Brazil rice industries. Energy, 154, 38-51. https://doi.org/10.1016/j.energy.2018.04.046 DOI: https://doi.org/10.1016/j.energy.2018.04.046

Nataraj, K.M., Banapurmath, N., Manavendra, G. & Yaliwal, V.(2016). Development of cooling and cleaning systems for enhanced gas quality for 3.7 kW gasifier-engine integrated system. International Journal of Engineering, Science and Technology, 8,(1), 43-56. DOI: http://dx.doi.org/10.4314/ijest.v8i1.4 DOI: https://doi.org/10.4314/ijest.v8i1.4

Nikpey, H., Assadi, M., Breuhaus, P. & Mørkved, P.T.(2014). Experimental evaluation and ANN modeling of a recuperative micro gas turbine burning mixtures of natural gas and biogas, Applied Energy, 117, 30-41, ISSN 0306-2619, https://doi.org/10.1016/j.apenergy.2013.11.074. DOI: https://doi.org/10.1016/j.apenergy.2013.11.074

Nizar, J., Takayuki, T. & Noboru, N.(2008). The Study on the Effect of Biogas Addition on the Diesel Tractor Engine for the Development of a Biogas Controller, IFAC Proceedings Volumes, 41(2), 9585-9590, ISSN 1474-6670, ISBN 9783902661005, https://doi.org/10.3182/20080706-5-KR-1001.01621. DOI: https://doi.org/10.3182/20080706-5-KR-1001.01621

Park, C., Park, S., Lee, Y., Kim, C., Lee, S. & Moriyoshi, Y.(2011). Performance and emission characteristics of a SI engine fueled by low calorific biogas blended with hydrogen. Int J Hydrog Energy, 36(16), 10080-10088. https://doi.org/10.1016/j.ijhydene.2011.05.018 DOI: https://doi.org/10.1016/j.ijhydene.2011.05.018

Park, S.-H., Lee, K.-M. & Hwang, C.-H.(2011a). Effects of hydrogen addition on soot formation and oxidation in laminar premixed C2 H2 /air flames. International Journal of Hydrogen Energy, 36(15), 9304-9311. https://doi.org/10.1016/j.ijhydene.2011.05.031 DOI: https://doi.org/10.1016/j.ijhydene.2011.05.031

Park, C., Park, S., Kim, C. & Lee, S.(2012). Effects of EGR on performance of engines with spark gap projection and fueled by biogas-hydrogen blends. International Journal of Hydrogen Energy, 37(19), 14640-14648. https://doi.org/10.1016/j.ijhydene.2012.07.080 DOI: https://doi.org/10.1016/j.ijhydene.2012.07.080

Patterson, T., Esteves, S., Dinsdale & R. Guwy, A.(2011). An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK. Energy Policy, 39, 1806-16. http://dx.doi.org/10.1016/j.enpol.2011.01.017. DOI: https://doi.org/10.1016/j.enpol.2011.01.017

Persson, T. & Baxter, D.(2014). Task 37 country overview-Energy from biogas, IEA Bioenergy

Piaptmanomai, S., Kaewluan & S. Vitidsant T.(2009). Economic assessment of biogas-to-electricity generation system with H2 S removal by activated carbon in small pig farms. Applied Energy, 86(5), 669-674, https://doi.org/10.1016/j.apenergy.2008.07.007 DOI: https://doi.org/10.1016/j.apenergy.2008.07.007

Pizzuti, L., Martins, C. A. Lacava, P. T.(2016). Laminar burning velocity and flammability limits in biogas: A literature review, Renewable and Sustainable Energy Reviews, 62, 856-865, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2016.05.011. DOI: https://doi.org/10.1016/j.rser.2016.05.011

Poeschl, M., Ward, S. & Owende, P.(2010). Prospects for expanded utilization of biogas in Germany. Renewable and Sustainable Energy Reviews, 14(7), 1782-1797, https://doi.org/10.1016/j.rser.2010.04.010 DOI: https://doi.org/10.1016/j.rser.2010.04.010

Porpatham, E., Ramesh, A. & Nagalingam, B.(2007). Effect of hydrogen addition on the performance of a biogas fuelled spark ignition engine. Int J Hydrogen Energy, 32(12), 2057-2065. https://doi.org/10.1016/j.ijhydene.2006.09.001 DOI: https://doi.org/10.1016/j.ijhydene.2006.09.001

Porpatham, E., Ramesh, A. & Nagalingam, B.(2008). Investigation on the effect of concentration of methane in biogas when used as a fuel for a spark ignition engine. Fuel, 87(8-9), 1651-1659, https://doi.org/10.1016/j.fuel.2007.08.014 DOI: https://doi.org/10.1016/j.fuel.2007.08.014

Porpatham, E., Ramesh, A. & Nagalingam, B.(2012). Effect of compression ratio on the performance and combustion of a biogas fuelled spark ignition engine. Energy Convers Manage, 95(1),247-256. https://doi.org/10.1016/j.fuel.2011.10.059 DOI: https://doi.org/10.1016/j.fuel.2011.10.059

Porpatham, E., Ramesh, A. & Nagalingam, B.(2017). Experimental studies on the effects of enhancing the concentration of oxygen in the inducted charge of a biogas fuelled spark ignition engine. Energy, 142, 303-312. https://doi.org/10.1016/j.energy.2017.10.025 DOI: https://doi.org/10.1016/j.energy.2017.10.025

Prajapati, A. K., Randa, R. & Parmar, N.(2015). Experimental study on utilization of biogas in IC engine. International Journal of Engineering Sciences Research Technology, 4(8), 827-835.

Rahbari, H. R.(2014). Effects of natural gas compositions on CNG fast filling process for buffer storage system. Oil Gas Sci Technol-Revue d'IFP Energies Nouvelles, 69, 319-30. http://dx.doi.org/10.2516/ogst/2012010. DOI: https://doi.org/10.2516/ogst/2012010

Rahman, K. Ramesh, A.(2017). Effect of reducing the methane concentration on the combustion and performance of a biogas diesel predominantly premixed charge compression ignition engine, Fuel, 206, 117-132, ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2017.05.100. DOI: https://doi.org/10.1016/j.fuel.2017.05.100

Rajkumari, K. & Govindarajan, P.(2010). Experimental investigation of oxygen enriched air intake on combustion parameters of a single cylinder diesel engine. Int J Eng Sci Technol, 2(8), 3621-3627, ISSN: 0975-5462

Rakopoulos, C. D., Michos, C. N. & Giakoumis, E. G.(2008). Studying the effects of hydrogen addition on the second-law balance of a biogas-fuelled spark ignition engine by use of a quasidimensional multi-zone combustion model. Proc Inst Mech Eng, J Autom Eng, 222(11), 2249-2268. DOI: https://doi.org/10.1243/09544070JAUTO947

Rakopoulos, C. D. & Kyritsis, D. C.(2006). Hydrogen enrichment effects on the second law analysis of natural and landfill gas combustion in engine cylinders. Int J Hydrog Energy, 31(10), 1384-1393. https://doi.org/10.1016/j.ijhydene.2005.11.002 DOI: https://doi.org/10.1016/j.ijhydene.2005.11.002

Rakopoulos, C. D. & Michos, C. N.(2009). Generation of combustion irreversibilities in a spark ignition engine under biogas-hydrogen mixtures fueling. Int J Hydrogen Energy, 34, 4422-4437. https://doi.org/10.1016/j.ijhydene.2009.02.087 DOI: https://doi.org/10.1016/j.ijhydene.2009.02.087

Ravi, K., Mathew, S., Bhasker, P. & Porpatham, E.(2016). Gaseous alternative fuels for CI engines-a technical review. International Journal of Pharmacy and Technology 8(4), 5257-5268.

Ray, N., Mohanty, M. K. & Mohanty, R.(2013). A Study on Application of Biogas as fuel in Compression Ignition Engines. International Journal of Innovations in Engineering and Technology, 3(1), 239-245. ISSN: 2319-1058.

Razbani, O., Mirzamohammad, N. & Assadi, M.(2011). Literature review and road map for using biogas in internal combustion engines. Third International Conference on Applied Energy, 16-18.

Roy, M.M., Tomita E., Kawahara N., Harada Y. & Sakane A.(2009). Performance and emission comparison of a supercharged dual-fuel engine fueled by producer gases with varying hydrogen content. Hydrog Energy, 34(18), 7811-7822. https://doi.org/10.1016/j.ijhydene.2009.07.056 DOI: https://doi.org/10.1016/j.ijhydene.2009.07.056

Sarker, S., Lamb, J., Hjelme, D. & Lien, K.(2018). Overview of recent progress towards in-situ biogas upgradation techniques. Fuel, 226, 686-697. https://doi.org/10.1016/j.fuel.2018.04.021 DOI: https://doi.org/10.1016/j.fuel.2018.04.021

Shah, D. R., Nagarsheth, H. J. & Acharya, P.(2016). Purification of Biogas using Chemical Scrubbing and Application of Purified Biogas as Fuel for Automotive Engines. Research Journal of Recent Sciences. International Science Community Association, 5, 1-7.

Shigarkanthi, V.M., Porpatham, E. & Ramesh, A.(2005). Experimental investigation and modeling of cycle by cycle variations in a gas fuelled SI engine, SAE Technical Paper DOI: https://doi.org/10.4271/2005-01-3480

Shrestha, B. & Karim, G.A.(1999). Hydrogen as an additive to methane for spark ignition engine applications. Int J Hydrogen Energy, 24({ bf 6), https://doi.org/10.1016/S0360-3199(98)00103-7 DOI: https://doi.org/10.1016/S0360-3199(98)00103-7

Singh, D., Devnani, G. L. & Pal, D.(2016). Biomethane an efficient source of production of CNG and formaldehyde. Int J Sci Eng Appl Sci, 2(1), 466-470.

Sivabalakrishnan, R. & Jegadheesan, C.(2014). Study of Knocking Effect in Compression Ignition Engine with Hydrogen as a Secondary Fuel. Chin J Eng, 2014, 1-8. https://doi.org/10.1155/2014/102390 DOI: https://doi.org/10.1155/2014/102390

Subramanian, K. A., Mathad, V. C., Vijay, V. K. & Subbarao, P. M. V.(2013). Comparative evaluation of emission and fuel economy of an automotive spark ignition vehicle fuelled with methane enriched biogas and CNG using chassis dynamometer. Appl Energy, 105, 17-29. http://dx.doi.org/10.1016/j.apenergy.2012.12.011. DOI: https://doi.org/10.1016/j.apenergy.2012.12.011

Sun, Q., Li, H., Yan, J., Liu, L., Yu, Z. & Yu, X.(2015). Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew Sustain Energy Rev, 51, 521-532. https://doi.org/10.1016/j.rser.2015.06.029 DOI: https://doi.org/10.1016/j.rser.2015.06.029

Talibi, M., Hellier, P., Balachandran, R. & Ladommatos, N.(2014). Effect of hydrogen-diesel fuel co-combustion on exhaust emissions with verification using an inecylinder gas sampling technique. Int J Hydrogen Energy, 39, 15088-15102. http://dx.doi.org/10.1016/j.ijhydene.2014.07.039. DOI: https://doi.org/10.1016/j.ijhydene.2014.07.039

Thamsiriroj, T., Smyth, H. & Murphy, J.D.(2011). A roadmap for the introduction of gaseous transport fuel: a case study for renewable natural gas in Ireland. Renew Sustain Energy Rev, 15, 4642-4651. http://dx.doi.org/10.1016/j.rser.2011.07.088. DOI: https://doi.org/10.1016/j.rser.2011.07.088

Tock, L., Gassner, M. & Maréchal, F.(2010). Thermochemical production of liquid fuels from biomass: thermo-economic modeling, process design and process integration analysis. Biomass Bioenerg, 34(12), 1838-1854. https://doi.org/10.1016/j.biombioe.2010.07.018 DOI: https://doi.org/10.1016/j.biombioe.2010.07.018

Tricase, C. & Lombardi, M.(2009). State of the art and prospects of Italian biogas production from animal sewage: technical-economic considerations. Renew Energy, 34, 477-485. http://dx.doi.org/10.1016/j.renene.2008.06.013. DOI: https://doi.org/10.1016/j.renene.2008.06.013

Ullah-Khan, Imran, Hafiz-Dzarfan Othman, Mohd, Hashim, Haslenda, Matsuura, Takeshi, Ismail, A.F., Rezaei-Dasht Arzhandi, M. & Wan Azelee, I.(2017). Biogas as a renewable energy fuel - A review of biogas upgrading, utilisation and storage. Energy Conversion and Management, 150, 277-294. https://doi.org/10.1016/j.enconman.2017.08.035 DOI: https://doi.org/10.1016/j.enconman.2017.08.035

Uusitalo, V., Soukka, R., Horttanainen, M., Niskanen, A. & Havukainen, J.(2013). Economics and Greenhouse Gas Balance of Biogas use systems in the Finnish Transportation Sector. Renewable Energy, 51, 132-140. https://doi.org/101016/j.renene.2012.09.002 DOI: https://doi.org/10.1016/j.renene.2012.09.002

Verma, S., Das, L. M. & Kaushik, S.C.(2017). Effects of varying composition of biogas on performance and emission characteristics of compression ignition engine using exergy analysis. Energy Conversion and Management, 138, 346-359, ISSN 0196-8904, https://doi.org/10.1016/j.enconman.2017.01.066. DOI: https://doi.org/10.1016/j.enconman.2017.01.066

Vijay, V., Kapoor, R., Trivedi, A. & Narale, P.(2015). Biogas upgrading and bottling technology for vehicular and cooking applications. Manage Nat Resour Chang Environ, 1, 135-153. DOI: https://doi.org/10.1007/978-3-319-12559-6_10

Wagemakers, A. & Leermakers, C.(2012). Review on the Effects of Dual Fuel Operation, Using Diesel and Gaseous Fuels, on Emissions and Performance, SAE Paper, 2012. https://doi.org/10.4271/2012-01-0869 DOI: https://doi.org/10.4271/2012-01-0869

Wang, J., Huang, Z., Fang, Y., Liu, B., Zeng, K., Miao, H. & Jiang, D.(2007). Combustion behaviors of a direct injection engine operating on various fractions of natural gas-hydrogen blends. International Journal of Hydrogen Energy, 32(15), 3555-3564. ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2007.03.011. DOI: https://doi.org/10.1016/j.ijhydene.2007.03.011

Wang, H., Zhao, X., Tong, L. & Yao, M.(2018). The effects of DI fuel properties on the combustion and emissions characteristics of RCCI combustión, Fuel, 227, 457-468, https://doi.org/10.1016/j.fuel.2018.04.025 DOI: https://doi.org/10.1016/j.fuel.2018.04.025

Weiland, P.(2010). Biogas production: current state and perspectives. Appl Microbiol Biotechnol, 85(4), 849-860. http://dx.doi.org/10.1007/s00253-009-2246-7. DOI: https://doi.org/10.1007/s00253-009-2246-7

Yaliwal, V. S., Banapurmath, N. R., Gireesh, N. M., Hosmath, R. S., Donateo, T. & Tewari, P.G.(2016). Effect of nozzle and combustion chamber geometry on the performance of a diesel engine operated on dual fuel mode using renewable fuels, Renewable Energy, 93, 483-501, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2016.03.020. DOI: https://doi.org/10.1016/j.renene.2016.03.020

Yamasaki, Y., Kanno, M., Suzuki, Y. & Kaneko, S.(2013). Development of an engine control system using city gas and biogas fuel mixture. Applied Energy, 101. 465-474. https://doi.org/10.1016/j.apenergy.2012.06.013 DOI: https://doi.org/10.1016/j.apenergy.2012.06.013

Yan, F., Xu, L. & Wang, Y.(2017). Application of hydrogen enriched natural gas in spark ignition IC engines: From fundamental fuel properties to engine performances and emissions. Renewable and Sustainable Energy Reviews, 82 (1), 1457-1488 https://doi.org/10.1016/j.rser.2017.05.227 DOI: https://doi.org/10.1016/j.rser.2017.05.227

Yilmaz, I. & Gumus, M.(2017). Investigation of the effect of biogas on combustion and emissions of TBC diesel engine. Fuel, 188, 69-78. https://doi.org/10.1016/j.fuel.2016.10.034 DOI: https://doi.org/10.1016/j.fuel.2016.10.034

Yingjian, L., Qiu, Q., Xiangzhu, H. & Jiezhi, L.(2014). Energy balance and efficiency analysis for power generation in internal combustion engine sets using biogas. Sustainable Energy Technologies and Assessments, 6, 25-33. https://doi.org/10.1016/j.seta.2014.01.003 DOI: https://doi.org/10.1016/j.seta.2014.01.003

Yousef, A. M. I., Eldrainy, Y. A., El-Maghlany, W. M. & Attia, A.(2016). Upgrading biogas by a low-temperature CO$_{2 $ removal technique, Alexandria Engineering Journal, 55(2), 1143-1150, ISSN 1110-0168, https://doi.org/10.1016/j.aej.2016.03.026. DOI: https://doi.org/10.1016/j.aej.2016.03.026

Xin, Z., Jian, X., Shizhuo, Z., Xiaosen, H. & Jianhua, L.(2013). The experimental study on cyclic variation in a spark ignited engine fueled with biogas and hydrogen blends. Int J Hydrog Energy, 38, 11164-8. https://doi.org/10.1016/j.ijhydene.2013.01.097 DOI: https://doi.org/10.1016/j.ijhydene.2013.01.097

Zhao, H., Stone, R. & Zhou, L.(2010). Analysis of the particulate emissions and combustion performance of a direct injection spark ignition engine using hydrogen and gasoline mixtures. International Journal of Hydrogen Energy, 35 (10), 4676-4686. https://doi.org/10.1016/j.ijhydene.2010.02.087 DOI: https://doi.org/10.1016/j.ijhydene.2010.02.087

Zhen, H., Leung, C. W., Cheung, C. S. & Huang, Z.(2016). Combustion characteristic and heating performance of stoichiometric biogas-hydrogen-air flame. Int. J. Heat Mass Transf 92, 807-814. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.040 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.040

Zhunqing, H. & Xin, Z.(2012). Experimental study on performance and emissions of engine fueled with lower heat value gas-hydrogen mixtures, International Journal of Hydrogen Energy, 37(1), 1080-1083, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2011.02.088. . . DOI: https://doi.org/10.1016/j.ijhydene.2011.02.088

How to Cite

APA

Riojas González, H., Bortoni Anzures, L. J., Martínez Torres, J. J. and Ruiz Leza, H. A. (2024). ALTERNATIVAS PARA EL MEJORAMIENTO DE BIOCOMBUSTIBLES GASEOSOS PARA MOTORES. Revista de la Facultad de Ciencias, 13(1), 6–35. https://doi.org/10.15446/rev.fac.cienc.v13n1.109222

ACM

[1]
Riojas González, H., Bortoni Anzures, L.J., Martínez Torres, J.J. and Ruiz Leza, H.A. 2024. ALTERNATIVAS PARA EL MEJORAMIENTO DE BIOCOMBUSTIBLES GASEOSOS PARA MOTORES. Revista de la Facultad de Ciencias. 13, 1 (Jan. 2024), 6–35. DOI:https://doi.org/10.15446/rev.fac.cienc.v13n1.109222.

ACS

(1)
Riojas González, H.; Bortoni Anzures, L. J.; Martínez Torres, J. J.; Ruiz Leza, H. A. ALTERNATIVAS PARA EL MEJORAMIENTO DE BIOCOMBUSTIBLES GASEOSOS PARA MOTORES. Rev. Fac. Cienc. 2024, 13, 6-35.

ABNT

RIOJAS GONZÁLEZ, H.; BORTONI ANZURES, L. J.; MARTÍNEZ TORRES, J. J.; RUIZ LEZA, H. A. ALTERNATIVAS PARA EL MEJORAMIENTO DE BIOCOMBUSTIBLES GASEOSOS PARA MOTORES. Revista de la Facultad de Ciencias, [S. l.], v. 13, n. 1, p. 6–35, 2024. DOI: 10.15446/rev.fac.cienc.v13n1.109222. Disponível em: https://revistas.unal.edu.co/index.php/rfc/article/view/109222. Acesso em: 30 jul. 2024.

Chicago

Riojas González, Hector, Liborio Jesús Bortoni Anzures, Juan Julián Martínez Torres, and Héctor Arturo Ruiz Leza. 2024. “ALTERNATIVAS PARA EL MEJORAMIENTO DE BIOCOMBUSTIBLES GASEOSOS PARA MOTORES”. Revista De La Facultad De Ciencias 13 (1):6-35. https://doi.org/10.15446/rev.fac.cienc.v13n1.109222.

Harvard

Riojas González, H., Bortoni Anzures, L. J., Martínez Torres, J. J. and Ruiz Leza, H. A. (2024) “ALTERNATIVAS PARA EL MEJORAMIENTO DE BIOCOMBUSTIBLES GASEOSOS PARA MOTORES”, Revista de la Facultad de Ciencias, 13(1), pp. 6–35. doi: 10.15446/rev.fac.cienc.v13n1.109222.

IEEE

[1]
H. Riojas González, L. J. Bortoni Anzures, J. J. Martínez Torres, and H. A. Ruiz Leza, “ALTERNATIVAS PARA EL MEJORAMIENTO DE BIOCOMBUSTIBLES GASEOSOS PARA MOTORES”, Rev. Fac. Cienc., vol. 13, no. 1, pp. 6–35, Jan. 2024.

MLA

Riojas González, H., L. J. Bortoni Anzures, J. J. Martínez Torres, and H. A. Ruiz Leza. “ALTERNATIVAS PARA EL MEJORAMIENTO DE BIOCOMBUSTIBLES GASEOSOS PARA MOTORES”. Revista de la Facultad de Ciencias, vol. 13, no. 1, Jan. 2024, pp. 6-35, doi:10.15446/rev.fac.cienc.v13n1.109222.

Turabian

Riojas González, Hector, Liborio Jesús Bortoni Anzures, Juan Julián Martínez Torres, and Héctor Arturo Ruiz Leza. “ALTERNATIVAS PARA EL MEJORAMIENTO DE BIOCOMBUSTIBLES GASEOSOS PARA MOTORES”. Revista de la Facultad de Ciencias 13, no. 1 (January 1, 2024): 6–35. Accessed July 30, 2024. https://revistas.unal.edu.co/index.php/rfc/article/view/109222.

Vancouver

1.
Riojas González H, Bortoni Anzures LJ, Martínez Torres JJ, Ruiz Leza HA. ALTERNATIVAS PARA EL MEJORAMIENTO DE BIOCOMBUSTIBLES GASEOSOS PARA MOTORES. Rev. Fac. Cienc. [Internet]. 2024 Jan. 1 [cited 2024 Jul. 30];13(1):6-35. Available from: https://revistas.unal.edu.co/index.php/rfc/article/view/109222

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

171

Downloads

Download data is not yet available.