Published

2024-01-01

MOLECULAR DRUG DISCOVERY OF POTENTIAL INHIBITOR OF COVID–19 USING SEVERAL MEDICINAL PLANT INGREDIENTS: A PROMISING THERAPY FOR VIRAL DISEASE

DESCUBRIMIENTO MOLECULAR DE UN INHIBIDOR POTENCIAL DE COVID--19 UTILIZANDO VARIOS INGREDIENTES DE PLANTAS MEDICINALES: UNA TERAPIA PROMETEDORA PARA LAS ENFERMEDADES VIRALES

DOI:

https://doi.org/10.15446/rev.fac.cienc.v13n1.111288

Keywords:

Covid19, medicinal plant, apigenine–7–glucoside, catechin, demethoxycurcumine, kaempferol, naringenin, oleuropein, quercetin (en)
Covid19, planta medicinal, apigenina--7--glucósido, catequina, demetoxicurcumina, kaempferol, naringenina, oleuropeína, quercetina (es)

Downloads

Authors

  • Fatemeh Mollaamin Department of Food Engineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey http://orcid.org/0000-0002-6896-336X
  • Majid Monajjemi Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
This research article aims to investigate the compounds of apigenine--7--glucoside, catechin, demethoxycurcumine, kaempferol, naringenin, oleuropein and quercetin extracted from \textit{Goji berries, Green tea, Turmeric, Chinese cabbage, Citrus fruit, Olive} and \textit{Chili pepper}, respectively, as a probable anti pandemic Covid19 receptor derived from medicinal plants. The physicochemical properties including heat of formation, Gibbs free energy, electronic energy, charge distribution have been evaluated for the active sites of natural drugs which can be proposed for Covid19 treatment. These phytochemicals can be attached to the active site of the database amino acids fragment of Tyr160--Met161--His162 as the selective zone of the Covid19 due to formation of hydrogen bonding. The theoretical calculations were done at various levels of theory to gain was more accurate equilibrium geometrical results, and IR spectral data for each of the complex proposed drugs of N--terminal or O--terminal auto--cleavage substrate were individually determined to elucidate the structural flexibility and substrate binding of seven medicinal plants jointed to active site of Covid19 molecule. A comparison of these structures with two configurations provides new insights for the design of substrate--based anti--targeting Covid19. This indicates a feasible model for designing wide--spectrum of anti--Covid19 drugs. The structure-based optimization of these structures has yielded two more efficacious lead compounds, N and O atoms through forming the hydrogen bonding with potent anti--Covid19

Este artículo de investigación pretende investigar los compuestos de apigenina--7--glucósido, catequina, demetoxicurcumina, kaempferol, naringenina, oleuropeína y quercetina extraídos de  bayas de Goji ,  té verde ,  cúrcuma ,  col china ,  cítricos ,  olivo  y  chile , respectivamente, como probable receptor antipandémico Covid19 derivado de plantas medicinales. Se han evaluado las propiedades fisicoquímicas, incluido el calor de formación, la energía libre de Gibbs, la energía electrónica y la distribución de la carga, de los sitios activos de los fármacos naturales que pueden proponerse para el tratamiento de Covid19. Estos fitoquímicos pueden unirse al sitio activo del fragmento de aminoácidos de la base de datos de Tyr160--Met161--His162 como zona selectiva del Covid19 debido a la formación de enlaces de hidrógeno. Los cálculos teóricos se realizaron en varios niveles de la teoría para ganar era más precisa de equilibrio resultados geométricos, y los datos espectrales IR para cada uno de los complejos propuestos drogas de N--terminal o O--terminal auto-cleavage sustrato se determinaron individualmente para dilucidar la flexibilidad estructural y sustrato de unión de siete plantas medicinales se unió al sitio activo de Covid19 molécula. La comparación de estas estructuras con dos configuraciones proporciona nuevos conocimientos para el diseño de Covid19 basado en el sustrato anti--objetivo. La optimización basada en la estructura de estos compuestos ha producido dos líderes más eficaces: los átomos N y O, a través de la formación de enlaces de hidrógeno, con el potente anti--COVID-19.

References

Akbulut, S. (2021). Medicinal Plants Preferences for the Treatment of COVID-19 Symptoms in Central and Eastern Anatolia, Kastamonu Univ., Journal of Forestry Faculty, 21(3), 196-207. https://doi:10.17475/kastorman.1048372. DOI: https://doi.org/10.17475/kastorman.1048372

Bakhshi, K., Mollaamin, F. & Monajjemi, M. (2011). Exchange and Correlation Effect of Hydrogen Chemisorption on Nano V(100) Surface: A DFT Study by Generalized Gradient Approximation (GGA). Journal of Computational and Theoretical Nanoscience, 8, 763-768, https://doi.org/10.1166/jctn.2011.1750. DOI: https://doi.org/10.1166/jctn.2011.1750

Becke, A. D. (1988). Density--functional exchange--energy approximation with correct asymptotic behavior. J. Chem. Phys., 38, 3098--3100. DOI: https://doi.org/10.1103/PhysRevA.38.3098

Becke, A. D. (1993). Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98, 5648--5652. DOI: https://doi.org/10.1063/1.464913

Begus, S., Pirnat, J., Jazbin?ek, V. & Trontelj, Z. (2017). Optical detection of low frequency NQR signals: A step forward from conventional NQR. J. Phys. D Appl. Phys. 50, 1--10. https://doi.org/10.1088/1361-6463/aa4f23 DOI: https://doi.org/10.1088/1361-6463/aa4f23

Blauwkamp, T.A., Thair, S. & Rosen, M. J. (2019). Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat Microbiol, 4, 663--674. https://doi.org/10.1038/s41564-018-0349-6. DOI: https://doi.org/10.1038/s41564-018-0349-6

Caille Mizrahi, A. (2020). Impact of a multiplex PCR assay (FilmArray(R)) on the management of patients with suspected central nervous system infections. Eur J Clin Microbiol Infect Dis, 39, 293-297. https://doi.org/10.1007/s10096-019-03724-7. DOI: https://doi.org/10.1007/s10096-019-03724-7

Caméléna, F., Moy, A.C., Dudoignon, E., Poncin, T., Deniau, B., Guillemet, L., Le Goff, J. et al. (2021). Performance of a multiplex polymerase chain reaction panel for identifying bacterial pathogens causing pneumonia in critically ill patients with COVID-19. Diagn Microbiol Infect Dis, 99, 115183. https://doi.org/10.1016/j.diagmicrobio.2020.115183. DOI: https://doi.org/10.1016/j.diagmicrobio.2020.115183

Dien Bard, J., McElvania, E. (2020). Panels and Syndromic Testing in Clinical Microbiology. Clin Lab Med. 40, 393--420. https://doi.org/10.1016/j.cll.2020.08.001 DOI: https://doi.org/10.1016/j.cll.2020.08.001

Frisch, MJ., Trucks, GW., Schlegel, HB., Scuseria, GE., Robb, MA., Cheeseman, JR., Scalmani, G. et al. (2016). Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT.

González--Vázquez, L.D., Arenas, M. (2023). Molecular Evolution of SARS—

CoV--2 during the COVID--19 Pandemic. Genes, 14, 407. https://doi.org/10.3390/genes14020407. DOI: https://doi.org/10.3390/genes14020407

Hagen, A., Eichinger, A., Meyer-Buehn, M. (2020). Comparison of antibiotic and acyclovir usage before and after the implementation of an on-site FilmArray meningitis/encephalitis panel in an academic tertiary pediatric hospital: a retrospective observational study. BMC Pediatr. 20, 56. https://doi.org/10.1186/s12887-020-1944-2. DOI: https://doi.org/10.1186/s12887-020-1944-2

Jo, S., Kim, S., Shin, D.H. & Kim, M.S. (2020). Inhibition of SARS-CoV 3CL protease by flavonoids. J. Enzyme Inhib. Med. Chem. 35(1), 145-151, https://doi: 10.1080/14756366.2019.1690480. DOI: https://doi.org/10.1080/14756366.2019.1690480

Juttukonda, L.J., Katz, S., Gillon, J. (2020). Impact of a rapid blood culture diagnostic test in a children's hospital depends on Gram-positive versus Gram--negative organism and day versus night shift. J Clin Microbiol. 58, e01400-e01419. https://doi.org/10.1128/JCM.01400-19. DOI: https://doi.org/10.1128/JCM.01400-19

Kawczak, P., Bober, L., Baczek, T.(2018c). QSAR analysis of selected antimicrobial structures belonging to nitro-derivatives of heterocyclic compounds. Lett Drug Des Discov. 17, 214-225 https://doi.org/10.2174/1570180815666181004112947. DOI: https://doi.org/10.2174/1570180815666181004112947

Khaleghian, M., Zahmatkesh, M., Mollaamin, F., Monajjemi, M. (2011). Investigation of Solvent Effects on Armchair Single-Walled Carbon Nanotubes: A QM/MD Study, Fuller. Nanotub. Carbon Nanostructures, 19, 251. DOI: https://doi.org/10.1080/15363831003721757

Khalili Hadad, B., Mollaamin, F., Monajjemi, M. (2011). Biophysical chemistry of macrocycles for drug delivery: A theoretical study, Russian Chemical Bulletin, 60, 238. DOI: https://doi.org/10.1007/s11172-011-0039-5

Lee, C., Yang, W., Parr, R. G. (1988).Development of the Colle--Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785--789. DOI: https://doi.org/10.1103/PhysRevB.37.785

Lee, S.H., Ruan, S.Y., Pan, S.C., Lee, T.F., Chien, J.Y., Hsueh P.R. (2019). Performance of a multiplex PCR pneumonia panel for the identification of respiratory pathogens and the main determinants of resistance from the lower respiratory tract specimens of adult patients in intensive care units. J Microbiol Immunol Infect. 52, 920-928. https://doi.org/10.1016/j.jmii.2019.10.009. DOI: https://doi.org/10.1016/j.jmii.2019.10.009

Mitton, B., Rule, R., Said, M. (2021). Laboratory evaluation of the BioFire FilmArray Pneumonia plus panel compared to conventional methods for the identification of bacteria in lower respiratory tract specimens: a prospective cross-sectional study from South Africa. Diagn Microbiol Infect Dis. 99, 115236. https://doi.org/10.1016/j.diagmicrobio.2020.115236. DOI: https://doi.org/10.1016/j.diagmicrobio.2020.115236

Mollaamin, F. (2014). Features of Parametric Point Nuclear Magnetic Resonance of Metals Implantation on Boron Nitride Nanotube by Density Functional Theory /Electron Paramagnetic Resonance. Journal of Computational and Theoretical Nanoscience, 11(11), 2014, 2393-2398. https://doi.org/10.1166/jctn.2014.3653. DOI: https://doi.org/10.1166/jctn.2014.3653

Mollaamin, F. (2022). Physicochemical investigation of anti-COVID19 drugs using several medicinal plants, J Chil Chem Soc., 67, 5537. DOI: https://doi.org/10.4067/S0717-97072022000205537

Mollaamin, F. (2023). Characterizing the structural and physicochemical properties of medicinal plants as a proposal for treating of viral malady, Trends in Immunotherapy,7, 1-16. DOI: https://doi.org/10.24294/ti.v7.i2.2329

Mollaamin, F. (2023). Computational Methods in the Drug Delivery of Carbon Nanocarriers onto Several Compounds in Sarraceniaceae Medicinal Plant as Monkeypox Therapy. Computation, 11, 84. https://doi.org/10.3390/computation11040084. DOI: https://doi.org/10.3390/computation11040084

Monajjemi, M., Baie, M.T., Mollaamin, F. (2020). Interaction between threonine and cadmium cation in [Cd(Thr)] (n = 1-3) complexes: Density functional calculations, Russ. Chem. Bull. 59, 886--889, https://doi.org/10.1007/s11172-010-0181-5. DOI: https://doi.org/10.1007/s11172-010-0181-5

Mollaamin, F., Ilkhani, A. R., Sakhaei, N., Bonsakhteh, B., Faridchehr, A., Tohidi, S., Monajjemi, M. (2015). Thermodynamic and solvent effect on dynamic structures of nano bilayer--cell membrane: Hydrogen bonding study, J. Comput. Theor. Nanosci. 12, 3148--3154. https://doi.org/10.1166/jctn.2015.4092. DOI: https://doi.org/10.1166/jctn.2015.4092

Monajjemi, M., Khaleghian, M., Tadayonpour, N. & Mollaamin, F. (2010). The effect of different solvents and temperatures on stability of single-walled carbon nanotube: A QM/MD study, Int. J. Nanosci. 09, 517--529.https://doi.org/10.1142/S0219581X10007071. DOI: https://doi.org/10.1142/S0219581X10007071

Mollaamin, F., Monajjemi, M., Salemi, S., Baei, M. T. (2011). A Dielectric Effect on Normal Mode Analysis and Symmetry of BNNT Nanotube. Fuller. Nanotub. Carbon Nanostructures, 19, 182--196, https://doi.org/10.1080/15363831003782932. DOI: https://doi.org/10.1080/15363831003782932

Mollaamin, F. & Monajjemi, M. (2015). Harmonic Linear Combination and Normal Mode Analysis of Semiconductor Nanotubes Vibrations, J. Comput. Theor. Nanosci, 12, 1030--1039. https://doi.org/10.1166/jctn.2015.3846. DOI: https://doi.org/10.1166/jctn.2015.3846

Mollaamin, F. & Monajjemi, M. (2021). Thermodynamic research on the inhibitors of coronavirus through drug delivery method, J Chil Chem Soc, 66, 5195. DOI: https://doi.org/10.4067/S0717-97072021000205195

Mollaamin, F. & Monajjemi, M. (2023). Carbon Nanotubes as Biosensors for Releasing Conjugated Bisphosphonates?Metal Ions in Bone Tissue: Targeted Drug Delivery through the DFT Method. Journal of carbon research, 9, 61. https://doi.org/10.3390/c9020061. DOI: https://doi.org/10.3390/c9020061

Mollaamin, F., Monajjemi, M., Mohammadi, S. (2023). Physicochemical Characterization of Antiviral Phytochemicals of Artemisia annua Plant as Therapeutic Potential against Coronavirus Disease: In Silico-Drug Delivery by Density Functional Theory Benchmark, Journal of Biological Regulators and Homeostatic Agents, 37(7), 3629.

Mollaamin, F., Monajjemi, M. (2024). In Situ Ti--Embedded SiC as Chemiresistive Nanosensor for Safety Monitoring of CO, CO2, NO, NO2: Molecular Modelling by Conceptual Density Functional Theory, Russ. J. Phys. Chem. B, 18(1), 49--66. https://doi.org/10.1134/S1990793124010159. DOI: https://doi.org/10.1134/S1990793124010159

Monajjemi, M., Shahriari, S. & Mollaamin, F. (2020). Evaluation of Coronavirus Families & Covid--19 Proteins:Molecular Modeling Study, Biointerface Res. Appl. Chem. 10, 6039--6057. https://doi.org/10.33263/BRIAC105.60396057. DOI: https://doi.org/10.33263/BRIAC105.60396057

Mollaamin, F., Shahriari, S., Monajjemi, M. (2022). Drug design of medicinal plants as a treatment of omicron variant (COVID--19 variant B.1.1.529), J. Chil. Chem. Soc. 67(3), 5562--5570. http://dx.doi.org/10.4067/S0717-97072022000305562. DOI: https://doi.org/10.4067/S0717-97072022000305562

Mollaamin, F. Shahriari, S. Monajjemi, M. (2023). Monkeypox disease treatment by tecovirimat adsorbed onto single-walled carbon nanotube through drug delivery method. J Chil Chem Soc, 68, 5796. DOI: https://doi.org/10.4067/S0717-97072023000105796

Mollaamin, F., Shahriari, S., Monajjemi, M. (2023). Treating omicron BA.4 & BA.5 via herbal antioxidant asafoetida: A DFT study of carbon nanocarrier in drug delivery, Journal of the Chilean Chemical Society, 68(textbf{1 ), 5781--5786. https://doi.org/10.4067/S0717-97072023000105781. DOI: https://doi.org/10.4067/S0717-97072023000105781

Monajjemi, M., Mahdavian, L., Mollaamin, F. & Khaleghian, M. (2009). Interaction of Na, Mg, Al, Si with carbon nanotube (CNT): NMR and IR study, Russ. J. Inorg. Chem, 54, 1465--1473. https://doi.org/10.1134/S0036023609090216. DOI: https://doi.org/10.1134/S0036023609090216

Monajjemi, M., Mollaamin, F. & Shojaei, S. (2020). An overview on coronaviruses family from past to COVID-19: Introduce some inhibitors as antiviruses from Gillan's plants, Biointerface Res Appl Chem, 3, 5575. DOI: https://doi.org/10.33263/BRIAC103.575585

Nabower, A. M., Miller, S., Biewen, B. (2019). Association of the FilmArray meningitis/encephalitis panel with clinical management. Hosp Pediatr. 9,763--769. https://doi.org/10.1542/hpeds.2019-0064. DOI: https://doi.org/10.1542/hpeds.2019-0064

Pan, T., Chen, R., He, X. et al. (2021). Infection of wild-type mice by SARS-CoV-2 B.1.351 variant indicates a possible novel cross-species transmission route. Sig Transduct Target Ther., 6, 420. https://doi.org/10.1038/s41392-021-00848-1 DOI: https://doi.org/10.1038/s41392-021-00848-1

Pandey, U., Greninger, A.L., Levin, G. R. (2020). Pathogen or bystander: clinical significance of detecting human herpesvirus 6 in pediatric cerebrospinal fluid. J Clin Microbiol. 58, e00313-e00320. https://doi.org/10.1128/JCM.00313-20 DOI: https://doi.org/10.1128/JCM.00313-20

Sarasia, E. M. Afsharnezhad, S., Honarparvar, B., Mollaamin, F., Monajjemi, M. (2011). Theoretical study of solvent effect on NMR shielding tensors of luciferin derivatives. Phys Chem Liquids, 49, 561. DOI: https://doi.org/10.1080/00319101003698992

Seliger, J., Žagar, V. (2012). New Methods for Detection of 14N NQR Frequencies. Appl Magn Reson. 43, 469--484. https://doi.org/10.1007/s00723-011-0303-8. DOI: https://doi.org/10.1007/s00723-011-0303-8

Shahriari, S., Monajjemi, M., Mollaamin, F.(2022)Determination of proteins specification with SARS--COVID--19 based ligand designing, J Chil Chem Soc 67: 5468. DOI: https://doi.org/10.4067/S0717-97072022000205468

Shahriari, S., Monajjemi, M., Zare, K. (2018). Penetrating to cell membrane bacteria by the efficiency of various antibiotics (clindamycin, metronidazole, azithromycin, sulfamethoxazole, baxdela, ticarcillin, and clavulanic acid) using S-NICS theory, Biointerface Research in Applied Chemistry, 8 (textbf{3 ), 3219--3223. DOI: https://doi.org/10.15421/2018_265

Shi, C.S., Nabar, N.R., Huang, N.N., et al.(2019). SARS-Coronavirus Open reading frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov. 5, 101. https://doi.org/10.1038/s41420-019-0181-7. DOI: https://doi.org/10.1038/s41420-019-0181-7

Tahan, A., Mollaamin, F., Monajjemi, M.(2009). Thermochemistry and NBO analysis of peptide bond: Investigation of basis sets and binding energy. Russian Journal of Physical Chemistry A, 83,587. DOI: https://doi.org/10.1134/S003602440904013X

Tansarli, G.S., Chapin, K.C.(2020). Diagnostic test accuracy of the BioFire(R) FilmArray(R) meningitis/encephalitis panel: a systematic review and meta-analysis. Clin Microbiol Infect, 26, 281-290. https://doi.org/10.1016/j.cmi.2019.11.016. DOI: https://doi.org/10.1016/j.cmi.2019.11.016

Trontelj, Z.; Pirnat, J.; Jazbinšek, V.; Lužnik, J.; Srčič, S.; Lavrič, Z.; Beguš, S.; Apih, T.; Žagar, V.; Seliger, J. (2020). Nuclear Quadrupole Resonance (NQR)--A Useful Spectroscopic Tool in Pharmacy for the Study of Polymorphism. Crystals, 10, 450. https://doi.org/10.3390/cryst10060450. DOI: https://doi.org/10.3390/cryst10060450

Van, T.T., Kim,T.H., Butler-Wu, S.M.(2020). Evaluation of the Biofire FilmArray meningitis/encephalitis assay for the detection of Cryptococcus neoformans/gattii. Clin Microbiol Infect, S1198-743X, 30031--30038. https://doi.org/10.1016/j.cmi.2020.01.007. DOI: https://doi.org/10.1016/j.cmi.2020.01.007

Yan, B., Chu, H., Yang, D., Sze, K.-H., Lai, P.-M., Yuan, S., Shuai, H., Wang, Y., Kao, R.Y.-T., Chan, J.F.-W., Yuen, K.-Y. (2019). Characterization of the Lipidomic Profile of Human Coronavirus-Infected Cells: Implications for Lipid Metabolism Remodeling upon Coronavirus Replication. Viruses, 11,73. https://doi.org/10.3390/v11010073. DOI: https://doi.org/10.3390/v11010073

Yang, L., Wen, K. S., Ruan, X., Zhao, Y.X., Wei, F. & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors, Molecules, 23 (4), 1--26. https://doi: 10.3390/molecules23040762. DOI: https://doi.org/10.3390/molecules23040762

Yen, M. Y., Schwartz, J., Chen, S. Y., King, C. C., Yang, G. Y., Hsueh, P. R. (2020). Interrupting COVID-19 transmission by implementing enhanced traffic control bundling: Implications for global prevention and control efforts. J Microbiol Immunol Infect, 53, 377-380. https://doi.org/10.1016/j.jmii.2020.03.011 DOI: https://doi.org/10.1016/j.jmii.2020.03.011

Zadeh, M. A. A., Lari, H., Kharghanian, L., Balali, E., Khadivi, R., Yahyaei, H., Mollaamin, F., Monajjemi, M.(2015). Density Functional Theory Study and Anti-Cancer Properties of Shyshaq Plant: In View Point of Nano Biotechnology. J Comput Theor Nanosci, 12, 4358-4367. https://doi.org/10.1166/jctn.2015.4366. DOI: https://doi.org/10.1166/jctn.2015.4366

Zhang, J., Zhou, L., Yang, Y., Peng, W., Wang, W., Chen, X.(2020). Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics. Lancet, 395, e39. https://doi.org/10.1016/S0140-6736(20)30313-5. DOI: https://doi.org/10.1016/S2213-2600(20)30071-0

How to Cite

APA

Mollaamin, F. and Monajjemi, M. (2024). MOLECULAR DRUG DISCOVERY OF POTENTIAL INHIBITOR OF COVID–19 USING SEVERAL MEDICINAL PLANT INGREDIENTS: A PROMISING THERAPY FOR VIRAL DISEASE. Revista de la Facultad de Ciencias, 13(1), 141–158. https://doi.org/10.15446/rev.fac.cienc.v13n1.111288

ACM

[1]
Mollaamin, F. and Monajjemi, M. 2024. MOLECULAR DRUG DISCOVERY OF POTENTIAL INHIBITOR OF COVID–19 USING SEVERAL MEDICINAL PLANT INGREDIENTS: A PROMISING THERAPY FOR VIRAL DISEASE. Revista de la Facultad de Ciencias. 13, 1 (Jan. 2024), 141–158. DOI:https://doi.org/10.15446/rev.fac.cienc.v13n1.111288.

ACS

(1)
Mollaamin, F.; Monajjemi, M. MOLECULAR DRUG DISCOVERY OF POTENTIAL INHIBITOR OF COVID–19 USING SEVERAL MEDICINAL PLANT INGREDIENTS: A PROMISING THERAPY FOR VIRAL DISEASE. Rev. Fac. Cienc. 2024, 13, 141-158.

ABNT

MOLLAAMIN, F.; MONAJJEMI, M. MOLECULAR DRUG DISCOVERY OF POTENTIAL INHIBITOR OF COVID–19 USING SEVERAL MEDICINAL PLANT INGREDIENTS: A PROMISING THERAPY FOR VIRAL DISEASE. Revista de la Facultad de Ciencias, [S. l.], v. 13, n. 1, p. 141–158, 2024. DOI: 10.15446/rev.fac.cienc.v13n1.111288. Disponível em: https://revistas.unal.edu.co/index.php/rfc/article/view/111288. Acesso em: 17 jul. 2024.

Chicago

Mollaamin, Fatemeh, and Majid Monajjemi. 2024. “MOLECULAR DRUG DISCOVERY OF POTENTIAL INHIBITOR OF COVID–19 USING SEVERAL MEDICINAL PLANT INGREDIENTS: A PROMISING THERAPY FOR VIRAL DISEASE”. Revista De La Facultad De Ciencias 13 (1):141-58. https://doi.org/10.15446/rev.fac.cienc.v13n1.111288.

Harvard

Mollaamin, F. and Monajjemi, M. (2024) “MOLECULAR DRUG DISCOVERY OF POTENTIAL INHIBITOR OF COVID–19 USING SEVERAL MEDICINAL PLANT INGREDIENTS: A PROMISING THERAPY FOR VIRAL DISEASE”, Revista de la Facultad de Ciencias, 13(1), pp. 141–158. doi: 10.15446/rev.fac.cienc.v13n1.111288.

IEEE

[1]
F. Mollaamin and M. Monajjemi, “MOLECULAR DRUG DISCOVERY OF POTENTIAL INHIBITOR OF COVID–19 USING SEVERAL MEDICINAL PLANT INGREDIENTS: A PROMISING THERAPY FOR VIRAL DISEASE”, Rev. Fac. Cienc., vol. 13, no. 1, pp. 141–158, Jan. 2024.

MLA

Mollaamin, F., and M. Monajjemi. “MOLECULAR DRUG DISCOVERY OF POTENTIAL INHIBITOR OF COVID–19 USING SEVERAL MEDICINAL PLANT INGREDIENTS: A PROMISING THERAPY FOR VIRAL DISEASE”. Revista de la Facultad de Ciencias, vol. 13, no. 1, Jan. 2024, pp. 141-58, doi:10.15446/rev.fac.cienc.v13n1.111288.

Turabian

Mollaamin, Fatemeh, and Majid Monajjemi. “MOLECULAR DRUG DISCOVERY OF POTENTIAL INHIBITOR OF COVID–19 USING SEVERAL MEDICINAL PLANT INGREDIENTS: A PROMISING THERAPY FOR VIRAL DISEASE”. Revista de la Facultad de Ciencias 13, no. 1 (January 1, 2024): 141–158. Accessed July 17, 2024. https://revistas.unal.edu.co/index.php/rfc/article/view/111288.

Vancouver

1.
Mollaamin F, Monajjemi M. MOLECULAR DRUG DISCOVERY OF POTENTIAL INHIBITOR OF COVID–19 USING SEVERAL MEDICINAL PLANT INGREDIENTS: A PROMISING THERAPY FOR VIRAL DISEASE. Rev. Fac. Cienc. [Internet]. 2024 Jan. 1 [cited 2024 Jul. 17];13(1):141-58. Available from: https://revistas.unal.edu.co/index.php/rfc/article/view/111288

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

95

Downloads

Download data is not yet available.