Problema de Cauchy asociado a la ecuación Kdv sobre espacios de Sobolev con peso
Cauchy problem for Kdv equation in weighted Sobolev spaces
DOI:
https://doi.org/10.15446/rev.fac.cienc.v8n2.74794Keywords:
Problema de Cauchy, KdV, Espacios de Sobolev con peso (es)Cauchy problem, KdV'weighted Sobolev spaces (en)
Downloads
En este trabajo se aborda, de una forma alternativa a las ideas sugeridas por Fonseca, Linares y Ponce (2015), el buen planteamiento local del problema de Cauchy asociado a la ecuación Korteweg-de Vries
{∂tu(x,t)+∂3xu(x,t)+u(x,t)∂xu(x,t)=0,x,t∈\R.u(x,0)=u0(x). Con base en la fórmula de Duhamel y utilizando el teorema de puntofijo de Banach se demuestra la existencia y unicidad de solución en un subconjunto del espacio de Sobolev con peso $Z_{s,r}:= H^s(\R)\cap L^2(|x|^rdx)$. Para estafinalidad se emplean estimativas lineales sobre el semigrupo unitario asociado y su derivada de Stein, argumentossimilares a las ideas de Kenig, Ponce y Vega y un lema de interpolación de Nahas y Ponce. La dependencia continua del dato inicial $u_0$ se deriva directamente del método empleado.
In this work we will face, in an alternative way to the one performed by Fonseca, Linares and Ponce (2015), the local well-posedness of the Cauchy problem associated to the Korteweg-de Vries equation
{∂tu(x,t)+∂3xu(x,t)+u(x,t)∂xu(x,t)=0,x,t∈\R.u(x,0)=u0(x).
Based in the Duhamel's formula and using the Banach fixed point theorem we are going to show the existence and uniqueness of solution in a subset of the weighted Sobolev space $Z_{s,r}:= H^s(\R)\cap L^2(|x|^rdx)$. To this end, we will use linear estimates over the unitary semigroup and it's Stein derivative; arguments based on Kenig, Ponce y Vega's ideas and an interpolation lemma due to Nahas and Ponce. The continuous dependence on the initial data is obtained directly from the used method.
References
Oguntuase, J. A. (2001). On an inequality of gronwall. Journal of inequalities in pure and applied math, 2(1).
Benedek, A. & Panzone, R. (1961). The space lp with mixed norm. Duke Math Journal, 28, 301–324.
Besov, O., Ilin, V., & Nikolskii, S. (1979). Integral respresentation of functions and inbedding theorems, vol 1, Scripta Series in Math.
Bourgain, J. (1993). Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations. ii. the kdv equation. Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations. II. The KdV equation, Geometric and Functional Analysis, 3(3), 209-262.
Bustamante, E., Jimíenez, J., & Mejía, J. (2013). Cauchy problems for the fifth order kdv equations in weighted sobolev spaces. arXiv preprint arXiv:1312.1552.
Bustamante, E., Urrea, J.J., & Mejia, J. (2018). A note on the Ostrovsky equation in weighted Sobolev spaces. Journal of Mathematical Analysis and Applications,, 460(2), 1004-1018.
Colliander, J., Keel, M., Staffilani, G., Takaoka, H., & Tao, T. (2003). Sharp global well-posedness for kdv and modified kdv on r and t. J. Amer. Math. Soc, 3, 705-749.
Fonseca, G., Linares, F., & Ponce, G. (2015). On persistence properties in fractional weighted spaces. Journal of the American Mathematical Society, 16(3) , 705-749.
Fonseca, G. & Ponce, G. (2011). The ivp for the benjamin-ono equation in weighted sobolev spaces. Journal of Functional Analysis, 260(2), 436-459.
Kato, T. (1983). On the cauchy problem for the (generalized) korteweg-de vries equation. Studies in Appl. Math. Adv. in Math. Suppl. Stud., 8(260), 93-128.
Kato, T. (2013). Perturbation theory for linear operators. Springer Science & Business Media.
Kenig, C., Ponce, G., & Vega, L. (1993). Well-posedness and scattering results for the generalized korteweg- de vries equation via contraction principle. Communications on Pure and Applied Mathematics, 46(4), 527-620.
Koch, H. & Tzvekov, N. (2005). Nonlinear wave interactions for the benjamin-ono equation. International Mathematics Research Notices, 2005(30), 1833-1847.
Korteweg, D. J. & de Vries, G. (1895). XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39(240), 422-443.
Miura, R. (1976). The Korteweg de Vries equation: A survey of results. SIAM review, 18(3), 412-459.
Molinet, L., Saut, J. C., & Tzvetkov, N. (2001). III-posedness issues for the benjamin-ono equation. SIAM journal on mathematical analysis, 33(4), 982-988.
Nahas, J. & Ponce, G. (2009). On the persistent properties of solutions to semi-linear schrodinger equation. Communications in Partial Differential Equations, 34(10), 1208-1227.
Stein, E. (1961). Characterization of function arising as potentials. Bulletin American Mathematical Society, 67.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Alejandro J. Castro, Amin Esfahani, Lyailya Zhapsarbayeva. (2024). A note on the quartic generalized Korteweg–de Vries equation in weighted Sobolev spaces. Nonlinear Analysis, 238, p.113400. https://doi.org/10.1016/j.na.2023.113400.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2019 Revista de la Facultad de Ciencias

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The authors or copyright holders of each paper confer to the Journal of the Faculty of Sciences of Universidad Nacional de Colombia a non-exclusive, limited and free authorization on the paper that, once evaluated and approved, is sent for its subsequent publication in accordance with the following characteristics:
- The corrected version is sent according to the suggestions of the evaluators and it is clarified that the paper mentioned is an unpublished document on which the rights are authorized and full responsibility is assumed for the content of the work before both the Journal of the Faculty of Sciences, Universidad Nacional de Colombia and third parties.
- The authorization granted to the Journal will be in force from the date it is included in the respective volume and number of the Journal of the Faculty of Sciences in the Open Journal Systems and on the Journal’s home page (https://revistas.unal.edu.co/index.php/rfc/index), as well as in the different databases and data indexes in which the publication is indexed.
- The authors authorize the Journal of the Faculty of Sciences of Universidad Nacional de Colombia to publish the document in the format in which it is required (printed, digital, electronic or any other known or to be known) and authorize the Journal of the Faculty of Sciences to include the work in the indexes and search engines deemed necessary to promote its diffusion.
- The authors accept that the authorization is given free of charge, and therefore they waive any right to receive any emolument for the publication, distribution, public communication, and any other use made under the terms of this authorization.
- All the contents of the Journal of the Faculty of Sciences are published under the Creative Commons Attribution – Non-commercial – Without Derivative 4.0.License
MODEL LETTER OF PRESENTATION and TRANSFER OF COPYRIGHTS
Personal data processing policy
The names and email addresses entered in this Journal will be used exclusively for the purposes set out in it and will not be provided to third parties or used for other purposes.