Publicado

2022-07-01 — Actualizado el 2022-07-01

Versiones

UNDERSTANDING A LIKELIHOOD FLAT PROBLEM: INFERENCES ON THE RATIO OF REGRESSION COEFFICIENTS IN LINEAR MODELS

ENTENDIENDO UN PROBLEMA DE VEROSIMILITUD PLANA: INFERENCIAS SOBRE EL COCIENTE DE COEFICIENTES DE REGRESIÓN EN MODELOS LINEALES

DOI:

https://doi.org/10.15446/rev.fac.cienc.v11n2.97782

Palabras clave:

Shape of the likelihood function; nested models; linear regression model; profile likelihood function. (en)
Forma de la función de verosimilitud; modelos anidados; modelo de regresión lineal; función de verosimilitud perfil. (es)

Descargas

Autores/as

  • Jorge Espindola Zepeda Universidad de Sonora, México
  • José A. Montoya Universidad de Sonora, México
In this paper, we analyze a flat likelihood function shape that arises when performing inferences on the ratio of two regression coefficients in a linear regression model, parameter of interest in various applications. Due to this shape, infinite length likelihood-confidence intervals can be obtained. In the cases discussed here these likelihood-confidence intervals are related to the nested models problem, which is analyzed in detail through three illustrative simulated cases. It is essential to understand the shapes of the likelihood function in order to legitimately criticize likelihood inferences. This is of particular importance since the likelihood function is a key ingredient used in many inference methods

En este artículo analizamos una forma plana de la función de verosimilitud que surge cuando se realizan inferencias sobre la razón de dos coeficientes de regresión, en un modelo lineal.  Debido a esta forma pueden obtenerse intervalos de verosimilitud-confianza de longitud infinita. En los casos que se discuten aquí, estos intervalos de verosimilitud-confianza están relacionados con el problema de modelos anidados. Es fundamental comprender las formas de la función de verosimilitud para criticar de manera legítima las inferencias por verosimilitud. Esto es de particular importancia ya que la función de verosimilitud es un ingrediente clave utilizado en muchos métodos inferenciales

Referencias

Berger, J. O., Liseo, B. & Wolpert, R. L. (1999). Integrated likelihood methods for eliminating nuisance parameters. Statistical Science, 14(1), 1-22. DOI: https://doi.org/10.1214/ss/1009211804

Breusch, T. S., Robertson, J. C. & Welsh, A. H. (1997). The emperor's new clothes: a critique of the multivariate t regression model. Statistica Neerlandica, 51(3), 269-286. DOI: https://doi.org/10.1111/1467-9574.00055

Casella, G. & Berger, R. L. (2002). Statistical inference. Duxbury. Pacific Grove, CA.

Casella, G., Berger, R. L. & Santana, D. (2001). Solutions Manual for Statistical Inference.

Catchpole, E. A. & Morgan, B. J. (1997). Detecting parameter redundancy. Biometrika, 84(1), 187-196. DOI: https://doi.org/10.1093/biomet/84.1.187

Cheng, R. C. H. & Iles, T. C. (1990). Embedded models in three-parameter distributions and their estimation. Journal of the Royal Statistical Society. Series B (Methodological), 52(1), 135-149. DOI: https://doi.org/10.1111/j.2517-6161.1990.tb01777.x

Cole, S. R., Chu, H. & Greenland, S. (2013). Maximum likelihood, profile likelihood, and penalized likelihood: a primer. American Journal of Epidemiology, 179(2), 252-260. DOI: https://doi.org/10.1093/aje/kwt245

Cox, D. R. (2006). Principles of statistical inference. Cambridge university Press. Cambridge. DOI: https://doi.org/10.1017/CBO9780511813559

El Adlouni, S., Ouarda, T. B., Zhang, X., Roy, R. & Bobée, B. (2007). Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resources Research, 43 (3), W03410. DOI: https://doi.org/10.1029/2005WR004545

Farcomeni, A.& Tardella, L. (2012). Identifiability and inferential issues in capture-recapture experiments with heterogeneous detection probabilities. Electronic Journal of Statistics, 6, 2602-2626. DOI: https://doi.org/10.1214/12-EJS758

Fay, M. P., Noubary, F. & Saul, A. (2009). Robust Noninferiority Tests for Potency of a Test Drug Against a Reference Drug. Statistics in Biopharmaceutical Research, 1(3), 291-300. DOI: https://doi.org/10.1198/sbr.2009.0023

Frery, A. C., Cribari-Neto, F. & De Souza, M. O. (2004). Analysis of minute features in speckled imagery with maximum likelihood estimation. EURASIP Journal on Advances in Signal Processing, 2004(16), 2476-2491. DOI: https://doi.org/10.1155/S111086570440907X

Ghosh, M., Datta, G. S., Kim, D. & Sweeting, T. J. (2006). Likelihood-based inference for the ratios of regression coeficients in linear models. Annals of the Institute of Statistical Mathematics, 58(3), 457-473. DOI: https://doi.org/10.1007/s10463-005-0027-3

Ghosh, M., Yin, M. & Kim, Y. H. (2003). Objective Bayesian inference for ratios of regression coeficients in linear models. Statistica Sinica, 13(2), 409-422.

Harter, H. L. & Moore, A. H. (1966). Local-maximum-likelihood estimation of the parameters of three-parameter lognormal populations from complete and censored samples. Journal of the American Statistical Association, 61(315), 842-851. DOI: https://doi.org/10.1080/01621459.1966.10480911

Hirschberg, J. & Lye, J. (2010). A reinterpretation of interactions in regressions. Applied Economics Letters, 17(5), 427-430. DOI: https://doi.org/10.1080/13504850701842843

Kalbfleisch, J. G. (1985). Probability and Statistical Inference, Vol. 2. Springer-Verlag. New York. DOI: https://doi.org/10.1007/978-1-4612-1096-2

Kreutz, C., Raue, A., Kaschek, D.& Timmer, J. (2013). Profile likelihood in systems biology. The FEBS journal, 280(11), 2564-2571. DOI: https://doi.org/10.1111/febs.12276

Li, R. & Sudjianto, A. (2005). Analysis of computer experiments using penalized likelihood in Gaussian Kriging models. Technometrics, 47(2), 111-120. DOI: https://doi.org/10.1198/004017004000000671

Lima, V. M. & Cribari-Neto, F. (2019). Penalized maximum likelihood estimation in the modified extended Weibull distribution. Communications in Statistics-Simulation and Computation, 48(2), 334-349. DOI: https://doi.org/10.1080/03610918.2017.1381735

Liu, S., Wu, H. & Meeker, W. Q. (2015). Understanding and addressing the unbounded "likelihood" problem. The American Statistician, 69(3), 191-200. DOI: https://doi.org/10.1080/00031305.2014.1003968

Martins, E. S. & Stedinger, J. R. (2000). Generalized maximum-likelihood generalized extreme value quantile estimators for hydrologic data. Water Resources Research, 36(3), 737-744. DOI: https://doi.org/10.1029/1999WR900330

Martins, E. S. & Stedinger, J. R. (2001). Generalized maximum likelihood Pareto-Poisson estimators for partial duration series. Water Resources Research, 37(10), 2551-2557. DOI: https://doi.org/10.1029/2001WR000367

Montoya, J. A., Díaz-Francés, E.& Sprott, D. A. (2009). On a criticism of the profile likelihood function. Statistical Papers, 50(1), 195-202. DOI: https://doi.org/10.1007/s00362-007-0056-5

Pewsey, A. (2000). Problems of inference for Azzalini's skewnormal distribution. Journal of Applied Statistics, 27(7), 859-870. DOI: https://doi.org/10.1080/02664760050120542

Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmüller, U. & Timmer, J. (2009). Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics, 25(15), 1923-1929. DOI: https://doi.org/10.1093/bioinformatics/btp358

Rawlings, J. O., Pantula, S. G. & Dickey, D. A. (1998). Applied regression analysis: a research tool. Springer-Verlag. New York. DOI: https://doi.org/10.1007/b98890

Rosenblad, A. K. (2020). The mean, variance, and bias of the OLS based estimator of the extremum of a quadratic regression model for small samples. Communications in Statistics-Theory and Methods, 51(9), 2870-2886. DOI: https://doi.org/10.1080/03610926.2020.1782936

Searle, S. R. & Gruber, M. H. (1971). Linear models. John Wiley & Sons. New York.

Sprott, D. A. (2008). Statistical inference in science. Springer-Verlag. New York.

Sundberg, R. (2010). Flat and multimodal likelihoods and model lack of fit in curved exponential families. Scandinavian Journal of Statistics, 37(4), 632-643. DOI: https://doi.org/10.1111/j.1467-9469.2010.00703.x

Tsionas, E. G. (2001). Likelihood and Posterior Shapes in Johnson's System. Sankhya: The Indian Journal of Statistics, Series B, 63(1), 3-9.

Tumlinson, S. E. (2015). On the non-existence of maximum likelihood estimates for the extended exponential power distribution and its generalizations. Statistics & Probability Letters, 107, 111-114. DOI: https://doi.org/10.1016/j.spl.2015.08.009

Cómo citar

APA

Espindola Zepeda, J. . y Montoya, J. A. (2022). UNDERSTANDING A LIKELIHOOD FLAT PROBLEM: INFERENCES ON THE RATIO OF REGRESSION COEFFICIENTS IN LINEAR MODELS. Revista de la Facultad de Ciencias, 11(2), 25–38. https://doi.org/10.15446/rev.fac.cienc.v11n2.97782

ACM

[1]
Espindola Zepeda, J. y Montoya, J.A. 2022. UNDERSTANDING A LIKELIHOOD FLAT PROBLEM: INFERENCES ON THE RATIO OF REGRESSION COEFFICIENTS IN LINEAR MODELS. Revista de la Facultad de Ciencias. 11, 2 (ago. 2022), 25–38. DOI:https://doi.org/10.15446/rev.fac.cienc.v11n2.97782.

ACS

(1)
Espindola Zepeda, J. .; Montoya, J. A. UNDERSTANDING A LIKELIHOOD FLAT PROBLEM: INFERENCES ON THE RATIO OF REGRESSION COEFFICIENTS IN LINEAR MODELS. Rev. Fac. Cienc. 2022, 11, 25-38.

ABNT

ESPINDOLA ZEPEDA, J. .; MONTOYA, J. A. UNDERSTANDING A LIKELIHOOD FLAT PROBLEM: INFERENCES ON THE RATIO OF REGRESSION COEFFICIENTS IN LINEAR MODELS. Revista de la Facultad de Ciencias, [S. l.], v. 11, n. 2, p. 25–38, 2022. DOI: 10.15446/rev.fac.cienc.v11n2.97782. Disponível em: https://revistas.unal.edu.co/index.php/rfc/article/view/97782. Acesso em: 30 jul. 2024.

Chicago

Espindola Zepeda, Jorge, y José A. Montoya. 2022. «UNDERSTANDING A LIKELIHOOD FLAT PROBLEM: INFERENCES ON THE RATIO OF REGRESSION COEFFICIENTS IN LINEAR MODELS». Revista De La Facultad De Ciencias 11 (2):25-38. https://doi.org/10.15446/rev.fac.cienc.v11n2.97782.

Harvard

Espindola Zepeda, J. . y Montoya, J. A. (2022) «UNDERSTANDING A LIKELIHOOD FLAT PROBLEM: INFERENCES ON THE RATIO OF REGRESSION COEFFICIENTS IN LINEAR MODELS», Revista de la Facultad de Ciencias, 11(2), pp. 25–38. doi: 10.15446/rev.fac.cienc.v11n2.97782.

IEEE

[1]
J. . Espindola Zepeda y J. A. Montoya, «UNDERSTANDING A LIKELIHOOD FLAT PROBLEM: INFERENCES ON THE RATIO OF REGRESSION COEFFICIENTS IN LINEAR MODELS», Rev. Fac. Cienc., vol. 11, n.º 2, pp. 25–38, ago. 2022.

MLA

Espindola Zepeda, J. ., y J. A. Montoya. «UNDERSTANDING A LIKELIHOOD FLAT PROBLEM: INFERENCES ON THE RATIO OF REGRESSION COEFFICIENTS IN LINEAR MODELS». Revista de la Facultad de Ciencias, vol. 11, n.º 2, agosto de 2022, pp. 25-38, doi:10.15446/rev.fac.cienc.v11n2.97782.

Turabian

Espindola Zepeda, Jorge, y José A. Montoya. «UNDERSTANDING A LIKELIHOOD FLAT PROBLEM: INFERENCES ON THE RATIO OF REGRESSION COEFFICIENTS IN LINEAR MODELS». Revista de la Facultad de Ciencias 11, no. 2 (agosto 4, 2022): 25–38. Accedido julio 30, 2024. https://revistas.unal.edu.co/index.php/rfc/article/view/97782.

Vancouver

1.
Espindola Zepeda J, Montoya JA. UNDERSTANDING A LIKELIHOOD FLAT PROBLEM: INFERENCES ON THE RATIO OF REGRESSION COEFFICIENTS IN LINEAR MODELS. Rev. Fac. Cienc. [Internet]. 4 de agosto de 2022 [citado 30 de julio de 2024];11(2):25-38. Disponible en: https://revistas.unal.edu.co/index.php/rfc/article/view/97782

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

244

Descargas

Los datos de descargas todavía no están disponibles.