Published

2023-04-30

CH4 and N2O fluxes during paddy rice crop development, post-harvest, and fallow

Flujos del CH4 y N2O durante el desarrollo del cultivo de arroz, post-cosecha y barbecho

DOI:

https://doi.org/10.15446/agron.colomb.v41n1.107053

Keywords:

greenhouse gases, diurnal flux variation, continuous water management (en)
gases de efecto invernadero, variación diurna del flujo, manejo continuo del agua (es)

Downloads

Authors

Paddy fields are major sources of greenhouse gases, mainly methane (CH4) and nitrous oxide (N2O). Defining the sampling times for determining the average diurnal emission rates is an important step in optimizing field measurement, avoiding the influence of possible peaks. With this purpose, diurnal gas measurements (CH4 and N2O) were taken using the static chamber method during five 24 h-periods (campaigns), every 2 h, at three rice crop development stages (R2, C1 campaign; R5, C2 campaign, and R8, C3 campaign), and in post-harvest (PH, C4 campaign) and in fallow (FP, C5 campaign) periods. The CH4 fluxes remained close to the average flux both at C1 (9.4 ± 1.0 mg CH4 m-2 h-1) and C2 (10.2 ± 1.4 mg CH4 m-2 h-1), allowing the gas sampling at any time of the day, except at 5:00 p.m. when a peak was observed at C1. As the CH4 fluxes for C3, C4, and C5 were close to zero, no average value was identified. The average N2O fluxes were low at C1 (1.0 ± 5.7 μg N2O m-2 h-1) and at C4 (6.7 ± 2.6 μg N2O m-2 h-1), increasing at C2 (26.9 ± 9.3 μg N2O m-2 h-1) and C3 (21.2 ± 7.2 μg N2O m-2 h-1) and reaching higher values during the C5 campaign (73.7 ± 33.3 μg N2O m-2 h-1). In general, considering the average flux values recorded in this study, the most appropriate times for sampling N2O during the C1, C2, C3, and C4 campaigns would be from 9 p.m. to 1 a.m. and also around 11:00 a.m. Average N2O flows in fallow would be more likely around 11:00 p.m. and 11 a.m.

Los arrozales son fuentes importantes de gases de efecto invernadero, principalmente el metano (CH4) y el óxido nitroso (N2O). Definir los tiempos de muestreo para la determinación de las tasas de emisión diurna promedio es un paso importante en la optimización de la medición en campo ya que evita la influencia de posibles picos. Con este fin se realizaron mediciones diurnas de gases (CH4 y N2O) utilizando el método de cámara estática durante los periodos de muestreo (M) de 24h, cada 2h, en tres etapas de desarrollo del cultivo de arroz (R2, M1; R5, M2; y R8, M3), en los periodos post-cosecha (PH, M4) y barbecho (FP, M5). Los flujos de CH4 permanecieron cercanos al flujo promedio en M1 (9.4 ± 1.0 mg CH4 m-2 h-1) y en M2 (10.2 ± 1.4 mg CH4 m-2 h-1), permitiendo la toma de muestras de gas en cualquier momento del día, excepto a las 5:00 p.m., cuando se observó un pico en M1. Como los flujos de CH4 para M3, M4 y M5 fueron cercanos a cero, no se identificó un valor promedio. Los flujos de N2O fueron bajos en M1 (1.0 ± 5.7 μg N2O m-2 h-1) y en M4 (6.7 ± 2.6 μg N2O m-2 h-1), aumentando en M2 (26.9 ± 9.3 μg N2O m-2 h-1) y M3 (21.2 ± 7.2 μg N2O m-2 h-1) y alcanzando valores más altos en M5 (73.7 ± 33.3 μg N2O m-2 h-1, en promedio). En general, considerando los valores de flujo promedio registrados en este estudio, los momentos más apropiados para el muestreo de N2O en M1, M2, M3 y M4 serían de 9 p.m. a 1 a.m. y también alrededor de las 11:00 a.m. Los flujos promedio de N2O en el período de barbecho serían más probables cerca de las 11:00 p.m. y 11:00 a.m.

References

Aulakh, M. S., Wasmann, R., Rennenberg, H., & Fink, S. (2000). Pattern and amount of aerenchyma relate to variable methane transport capacity of different rice cultivars. Plant Biology, 2(2), 182−194. https://doi.org/10.1055/s-2000-9161 DOI: https://doi.org/10.1055/s-2000-9161

Brye, K. R., Smartt, A. D., & Norman, R. J. (2017). Diurnal methane fluxes as affected by cultivar from direct-seeded, delayed-flood rice production. Journal of Environmental Protection, 8(9), 957−973. https://doi.org/10.4236/jep.2017.89060 DOI: https://doi.org/10.4236/jep.2017.89060

Costa, F. S., Bayer, C., Lima, M. A., Frighetto, R. T. S., Macedo, V. R. M., & Marcolin, E. (2008). Variação diária da emissão de metano em solo cultivado com arroz irrigado no Sul do Brasil. Ciência Rural, 38(7), 2049−2053. https://doi.org/10.1590/S0103-84782008000700041 DOI: https://doi.org/10.1590/S0103-84782008000700041

Dai, S., Ju, W., Zhang, Y., He, Q., Song, L., & Li, J. (2019). Variations and drivers of methane fluxes from a rice-wheat rotation agroecosystem in eastern China at seasonal and diurnal scales. Science of the Total Environment, 690(10), 973−990. https://doi.org/10.1016/j.scitotenv.2019.07.012 DOI: https://doi.org/10.1016/j.scitotenv.2019.07.012

Dalal, R. C., Allen, D. E., Livesley, S. J., & Richards, G. (2008). Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscape: a review. Plant and Soil, 309(1-2), 43−76. https://doi.org/10.1007/s11104-007-9446-7 DOI: https://doi.org/10.1007/s11104-007-9446-7

Das, S., & Adhya, T. K. (2012). Dynamics of methanogenesis and methanotrophy in tropical paddy soils as influenced by elevated CO2 and temperature interaction. Soil Biology and Biochemistry, 47, 36−45. https://doi.org/10.1016/j.soilbio.2011.11.020 DOI: https://doi.org/10.1016/j.soilbio.2011.11.020

Denmead, O. T., Freney, J. R., & Simpson, J. R. (1979). Nitrous oxide emissions during denitrification in a flooded field. Soil Science Society of America Journal, 43(4), 716−718. https://doi.org/10.2136/sssaj1979.03615995004300040017x DOI: https://doi.org/10.2136/sssaj1979.03615995004300040017x

Embrapa-Empresa Brasileira de Pesquisa Agropecuária. (2013). Sistema brasileiro de classificação de solos. Brasília, DF: Embrapa.

Gaihre, Y. K., Wassmann, R., Tirol-Padre, A., Villegas-Pangga, G., Aquino, E., & Kimballc, B. A. (2014). Seasonal assessment of greenhouse gas emissions from irrigated lowland rice fields under infrared warming. Agriculture, Ecosystems and Environment, 184, 88–100. https://doi.org/10.1016/j.agee.2013.11.024 DOI: https://doi.org/10.1016/j.agee.2013.11.024

Gaihre, Y. K., Wassmann, R., Villegas-Pangga, G., Sanabria, J., Aquino, E., Sta. Cruz, P. C., & Paningbatan Jr, E. P. (2016). Effects of increased temperatures and rice straw incorporation on methane and nitrous oxide emissions in a greenhouse experiment with rice. European Journal of Soil Science, 67, 868−880. https://doi.org/10.1111/ejss.12389 DOI: https://doi.org/10.1111/ejss.12389

Hou, A. X., Chen, G. X., Wang, Z. P., Van Cleemput, O., & Patrick Jr, W. H. (2000). Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes. Soil Science Society of America Journal, 64(6), 2180−2186. https://doi.org/10.2136/sssaj2000.6462180x DOI: https://doi.org/10.2136/sssaj2000.6462180x

Hua, X., Guangxi, X., Cai, Z. C., & Tsuruta, H. (1997). Nitrous oxide emissions from three paddy fields in China. Nutrient Cycling in Agroecosystems, 49(1-3), 23−28. https://doi.org/10.1023/A:1009779514395 DOI: https://doi.org/10.1023/A:1009779514395

Kajiura, M., Minamikawa, K., Tokida, T., Shirato, Y., & Wagai, R. (2018). Methane and nitrous oxide emissions from paddy fields in Japan: An assessment of controlling factor using an intensive regional data set. Agriculture, Ecosystems & Environment, 252, 51−60. https://doi.org/10.1016/j.agee.2017.09.035 DOI: https://doi.org/10.1016/j.agee.2017.09.035

Liang, X. Q., Li, H., Wang, S. X., Ye, Y. S., Ji, Y. J., Tian, G. M., Van Kessel, C., & Linquist, B. A. (2013). Nitrogen management to reduce yield-scaled global warming. Field Crops Research, 146, 66−74. https://doi.org/10.1016/j.fcr.2013.03.002 DOI: https://doi.org/10.1016/j.fcr.2013.03.002

Lima, M. A., Pazianotto, R. A. A., Villela, O. V., & Paraiba, L. C. (2018). Diurnal variation of methane emission from a paddy field in Brazilian Southeast. Ciência Rural, 48(04), Article e20170054. https://doi.org/10.1590/0103-8478cr20170054 DOI: https://doi.org/10.1590/0103-8478cr20170054

Linquist, B. A., Adviento-Borbe, M. A., Pittelkow, C. M., Van Kessel, C., & Van Groenigen, K. J. (2012). Fertilizer management practice and greenhouse gas emissions from rice systems: a quantitative review and analysis. Field Crops Research, 135, 10−21. https://doi.org/10.1016/j.fcr.2012.06.007 DOI: https://doi.org/10.1016/j.fcr.2012.06.007

Ma, L., Liu, B., Cui, Y., & Shi, Y. (2021). Variations and drivers of methane fluxes from double-cropping paddy fields in Southern China at diurnal, seasonal and inter-seasonal timescales. Water, 13(16), Article 2171. https://doi.org/10.3390/w13162171 DOI: https://doi.org/10.3390/w13162171

Maboni, C., Bremm, T., Aguiar, L. J. G., Scivittaro, W. B., Souza, V. A., Zimermann, H. R., Teichrieb, C. A., Oliveira, P. E. S., Herdies, D. L., Degrazia, G. A., & Roberti, D. R. (2021). The fallow period plays an important role in annual CH4 emission in a rice paddy in Southern Brazil. Sustainability, 13(20), Article 11336. https://doi.org/10.3390/su132011336 DOI: https://doi.org/10.3390/su132011336

Marrenjo, G. J., Pádua, E. J., Silva, C. A., Soares, P. C., & Zinn, Y. L. (2016). Impactos do cultivo por longo tempo de arroz inundado em Gleissolos. Pesquisa Agropecuária Brasileira, 51(08), 967−977. https://doi.org/10.1590/S0100-204X2016000800009 DOI: https://doi.org/10.1590/S0100-204X2016000800009

Martínez-Eixarch, M., Alcaraz, C., Viñas, M., Noguerol, J., Aranda, J., Prenafeta-Boldú, F. X., Saldaña-De La Vega, J. A., Catalá, M. M., & Ibáñez, C. (2018). Neglecting the fallow season can significantly underestimate annual methane emissions in Mediterranean rice fields. PLoS ONE, 13(8), Article e0202159. https://doi.org/10.1371/journal.pone.0198081 DOI: https://doi.org/10.1371/journal.pone.0202159

Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., & Zhang, H. (2013). Anthropogenic and natural radiative forcing. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change (pp. 659–740). Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf DOI: https://doi.org/10.1017/CBO9781107415324.018

Pérez, C. A., Carmona, M. R., Fariña, J. M., & Armesto, J. J. (2010). Effects of nitrate and labile carbon on denitrification of Southern temperate forest soils. Chilean Journal of Agricultural Research, 70(2), 251−258. https://doi.org/10.4067/S0718-58392010000200008 DOI: https://doi.org/10.4067/S0718-58392010000200008

Sander, B. O., & Wassmann, R. (2014). Common practices for manual greenhouse gas sampling in rice production: a literature study on sampling modalities of the closed chamber method. Greenhouse Gas Measurement and Management, 4(1), 1−13. https://doi.org/10.1080/20430779.2014.892807 DOI: https://doi.org/10.1080/20430779.2014.892807

SAS Institute Inc. (2011). SAS/STAT® 9.3 User’s Guide, Cary, NC: SAS Institute Inc.

Schütz, H., Seiler, W., & Conrado, R. (1990). Influence of soil temperature on methane emission from rice paddy fields. Biogeochemistry, 11(2), 77−95. https://doi.org/10.1007/BF00002060 DOI: https://doi.org/10.1007/BF00002060

Shang, Q. Y., Yang, X. X., Gao, C. M., Wu, P. P., Liu, J. J., Xu, Y. C., Shen, Q. R., Zou, J. W., & Guo, S. W. (2011). Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. Global Change Biology, 17(6), 2196−2210. https://doi.org/10.1111/j.1365-2486.2010.02374.x DOI: https://doi.org/10.1111/j.1365-2486.2010.02374.x

Tan, X. Z., Shao, D. G., & Gu, W. Q. (2018). Effects of temperature and soil moisture on gross nitrification and denitrification rates in Chinese lowland paddy field soil. Paddy and Water Environment, 16, 687−698. https://doi.org/10.1007/s10333-018-0660-0 DOI: https://doi.org/10.1007/s10333-018-0660-0

Wang, C., Lai, D. Y. F., Sardans, J., Wang, W., Zeng, C., & Peñuelas, J. (2017). Factors related with CH4 and N2O emissions from a paddy field: clues for management implications. PLoS ONE, 12(1), Article e0169254. https://doi.org/10.1371/journal.pone.0169254 DOI: https://doi.org/10.1371/journal.pone.0169254

Wang, J. Y., Jia, J. X., Xiong, Z. Q., Khalil, M, A. K., & Xing, G. X. (2011). Water regime-nitrogen fertilizer-straw incorporation interaction: field study on nitrous oxide emissions from a rice agroecosystem in Nanjing, China. Agriculture, Ecosystems & Environment, 141(3−4), 437−446. https://doi.org/10.1016/j.agee.2011.04.009 DOI: https://doi.org/10.1016/j.agee.2011.04.009

Wassmann, R., Alberto, M. C., Tirol-Padre, A., Hoang, N. T., Romasanta, R., Centeno, C. A., & Sander, B. O. (2018). Increasing sensitivity of methane emission measurements in rice through deployment of ‘closed chambers’ at nighttime. PLoS ONE, 13(2), Article e0191352. https://doi.org/10.1371/journal.pone.0191352 DOI: https://doi.org/10.1371/journal.pone.0191352

Weller, S., Janz, B., Jörg, L., Kraus, D., Racela, H. S. U., Wassmann, R., Butterbach-Bahl, K., & Kiese, R. (2016). Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice rotation systems. Global Change Biology, 22, 432−448. https://doi.org/10.1111/gcb.13099 DOI: https://doi.org/10.1111/gcb.13099

Weller, S., Kraus, D., Butterbach-Bahl, K., Wassmann, R., & Tirol-Padre, A. (2015). Diurnal patterns of methane emissions from paddy rice fields in the Philippines. Journal of Plant Nutrition and Soil Science, 178(5), 755−767. https://doi.org/10.1002/jpln.201500092 DOI: https://doi.org/10.1002/jpln.201500092

Zou, J., Huang, Y., Qin, Y., Liu, S., Shen, Q., Pan, G., Lu, Y., & Liu, Q. (2009). Changes in fertilizer-induced direct N2O emissions from paddy fields during rice-growing season in China between 1950 and 1990. Global Change Biology, 15(1), 229−242. https://doi.org/10.1111/j.1365-2486.2008.01775.x DOI: https://doi.org/10.1111/j.1365-2486.2008.01775.x

How to Cite

APA

Lima, M. A. de, Faria Vieira, R., Barreto Luiz, A. J. and Haddad Galvão, J. A. (2023). CH4 and N2O fluxes during paddy rice crop development, post-harvest, and fallow. Agronomía Colombiana, 41(1), e107053. https://doi.org/10.15446/agron.colomb.v41n1.107053

ACM

[1]
Lima, M.A. de, Faria Vieira, R., Barreto Luiz, A.J. and Haddad Galvão, J.A. 2023. CH4 and N2O fluxes during paddy rice crop development, post-harvest, and fallow. Agronomía Colombiana. 41, 1 (Jan. 2023), e107053. DOI:https://doi.org/10.15446/agron.colomb.v41n1.107053.

ACS

(1)
Lima, M. A. de; Faria Vieira, R.; Barreto Luiz, A. J.; Haddad Galvão, J. A. CH4 and N2O fluxes during paddy rice crop development, post-harvest, and fallow. Agron. Colomb. 2023, 41, e107053.

ABNT

LIMA, M. A. de; FARIA VIEIRA, R.; BARRETO LUIZ, A. J.; HADDAD GALVÃO, J. A. CH4 and N2O fluxes during paddy rice crop development, post-harvest, and fallow. Agronomía Colombiana, [S. l.], v. 41, n. 1, p. e107053, 2023. DOI: 10.15446/agron.colomb.v41n1.107053. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/107053. Acesso em: 27 jul. 2024.

Chicago

Lima, Magda Aparecida de, Rosana Faria Vieira, Alfredo José Barreto Luiz, and José Abrahão Haddad Galvão. 2023. “CH4 and N2O fluxes during paddy rice crop development, post-harvest, and fallow”. Agronomía Colombiana 41 (1):e107053. https://doi.org/10.15446/agron.colomb.v41n1.107053.

Harvard

Lima, M. A. de, Faria Vieira, R., Barreto Luiz, A. J. and Haddad Galvão, J. A. (2023) “CH4 and N2O fluxes during paddy rice crop development, post-harvest, and fallow”, Agronomía Colombiana, 41(1), p. e107053. doi: 10.15446/agron.colomb.v41n1.107053.

IEEE

[1]
M. A. de Lima, R. Faria Vieira, A. J. Barreto Luiz, and J. A. Haddad Galvão, “CH4 and N2O fluxes during paddy rice crop development, post-harvest, and fallow”, Agron. Colomb., vol. 41, no. 1, p. e107053, Jan. 2023.

MLA

Lima, M. A. de, R. Faria Vieira, A. J. Barreto Luiz, and J. A. Haddad Galvão. “CH4 and N2O fluxes during paddy rice crop development, post-harvest, and fallow”. Agronomía Colombiana, vol. 41, no. 1, Jan. 2023, p. e107053, doi:10.15446/agron.colomb.v41n1.107053.

Turabian

Lima, Magda Aparecida de, Rosana Faria Vieira, Alfredo José Barreto Luiz, and José Abrahão Haddad Galvão. “CH4 and N2O fluxes during paddy rice crop development, post-harvest, and fallow”. Agronomía Colombiana 41, no. 1 (January 1, 2023): e107053. Accessed July 27, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/107053.

Vancouver

1.
Lima MA de, Faria Vieira R, Barreto Luiz AJ, Haddad Galvão JA. CH4 and N2O fluxes during paddy rice crop development, post-harvest, and fallow. Agron. Colomb. [Internet]. 2023 Jan. 1 [cited 2024 Jul. 27];41(1):e107053. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/107053

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

378

Downloads

Download data is not yet available.