Published
PROCESOS PUNTUALES, DENSIDADES PRODUCTO Y BIOLOGÍA CELULAR
Keywords:
Modelos estocásticos, procesos puntuales, reparación de células, paridad de células (es)Stochastic models, point processes, cell repair, parity of cells (en)
Downloads
1Departamento de Matemáticas, Universidad de los Andes, Sede Bogotá. E-mail: aviswana@uniandes.edu.co., Departamento de Estadística, Universidad Nacional de Colombia, Sede Bogotá.
En este artículo se explica cómo los procesos puntuales han sido usados con éxito para modelar problemas de poblaciones celulares. En particular, se muestra la utilidad de la técnica de densidades producto para tratar un problema de células sujetas a radiación. Se proponen dos tipos de modelos estocásticos: el primero trata sobre la reparación de células basada en cinética enzimática y el segundo sobre la paridad de células en el crecimiento de un tumor. Mediante la técnica de densidades producto hallamos varias características estadísticas claves de estos dos modelos.
Palabras Clave: Modelos estocásticos, procesos puntuales, reparación de células, paridad de células.
In this paper an attempt is made to explain how point processes have been successfully used in modeling cell biology problems. In particular we demonstrate the utility of the product density techniques in dealing with cells sub- ject to radiation. In this paper, we propose two types of stochastic models: the first one is concerned with cell repair based on enzyme kinetics and the second one with parity of cells in tumor growth. Using product density techniques, we device several key statistical characteristics of the models.
Keywords: Stochastic models, point processes, cell repair, parity of cells.
Texto completo disponible en PDF
Referencias
1. Albright, N. W. (1989), "A markov formulation of the repair-misrepair model of cell survival", Radiation Research 118, 120.
2. Bertuzzi, A., Gandolfi, A. & Giovenco, M. A. (1981), "Mathematical models of the cell cycle with a view to tumor studies", Mathematical Biosciences 53, 159-188.
3. Braby, L. A. & Nelson, J. M. (1991), Linear-quadratic dose kinetics or dose dependent repair/misrepair, in "Workshop on Biological Modelling of Radiation Effects", Padue - Italy, pp. 331334.
4. Cox, D. R. & Isham, V. (1980), Point Processes, Chapman and Hall, New York.
5. Curtis, S. B. (1986), "Lethal and potentially lethal lesions induced by radiation: a unified repair model", Radiation Research 106, 252270.
6. Daley, D. J. & Vere-Jones, D. (2003), An Introduction to Theory of Point Processes: Elementary Theory and Methods, Vol. Volume I, 2 edn, Springer, New York.
7. Gani, J. & Saunders, I. W. (1976), "On the parity of individuals in a branching process", Journal of Applied Probability 13, 219230.
8. Goodhead, D. T. (1985), "Saturable repair models of radiation action in mammalian cells", Radiation Research 104, S58S67.
9. Janssen, I. (1987), "A stochastic repair-misrepair model for effects of radiation on cells", Journal of Mathematical Biology 24, 681689.
10. Ramakrishnan, A. (1950), "Stochastic processes relating to particles distributed in a continuous infinity of states", Proceedings Cambridge Philosophical Society 46, 595602.
11. Rangan, A. & Arunachalam, V. (1998), "A stochastic model for cell repair based on enzyme kinetics", Journal of Biological Systems 5, 139150.
12. Rangan, A. & Arunachalam, V. (1999), "On the parity of cells in tumor growth", Stochastic Processes and Applications pp. 6172. Narosa, New Delhi.
13. Sontag, W. (1987), "A cell survival model with saturable repair after irradiation", Radiation Environmental Biophysics 26, 6379.
14. Srinivasan, S. K. (1974), Stochastic Point Processes and their Applications, Griffin, London.
15. Srinivasan, S. K. & Ranganathan, C. R. (1982), "On the parity of individuals in birth and death processes", Advances in Applied probability 14, 484501.
16. Tobias, C. A. (1985), "The repair-misrepair model in radiobiology: Comparison to other models", Radiation Research 104, S77S95.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
Copyright (c) 2005 Revista Colombiana de Estadística
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).