Published
COMBINACIÓN DE MÉTODOS FACTORIALES Y DE ANÁLISIS DE CONGLOMERADOS EN R: EL PAQUETE FACTOCLASS
COMBINATION OF FACTORIAL METHODS AND CLUSTER ANALYSIS IN R: THE PACKAGE FACTOCLASS
Keywords:
software estadístico, análisis multivariado, análisis en componentes principales, análisis de correspondencias, K-medias, clasificación jerárquica, LATEX (es)Statistical software, Multivariate analysis, Principal components analysis, Correspondence analysis, K-means clustering, Hierarchical clustering, LATEX (en)
Downloads
1Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Estadística, Bogotá, Colombia. Profesor asociado. Email: cpardot@unal.edu.co
2Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Estadística, Bogotá, Colombia. Estadístico. Email: pcdelcampon@unal.edu.co
Se presenta el paquete de R FactoClass, donde se implementa la estrategia descrita en Lebart et al. (1995), que combina métodos factoriales con análisis de conglomerados, en la exploración multivariada de tablas de datos. Se utilizan funciones de ade4 (Chessel et al. 2004) para realizar el análisis factorial de los datos y de stats para el análisis de conglomerados. Se crean funciones para tareas específicas y se modifican algunas de las existentes. Se describen los pasos para crear FactoClass en ambiente Windows y se ilustra el uso del paquete con un ejemplo.
Palabras clave: software estadístico, análisis multivariado, análisis en componentes principales, análisis de correspondencias, K-medias, clasificación jerárquica, LaTeX.
The new R package FactoClass to combine factorial methods and cluster analysis is presented. This package is implemented in order to perform a multivariate exploration of a data table according to Lebart et al. (1995). We use some ade4 functions (Chessel et al. 2004) to perform the factorial analysis of the data and some stats functions in R to perform cluster methods. Some new functions are programmed to make specific tasks and another old ones are modified. We describe the implementation of FactoClass in the Windows environment and illustrate its use with an example.
Key words: Statistical software, Multivariate analysis, Principal components analysis, Correspondence analysis, K-means clustering, Hierarchical clustering, LaTeX.
Texto completo disponible en PDF
Referencias
1. Cazes, P., Chessel, D. & Doledec, S. (1988), 'L'analyse des correspondances internes d'un tableau partitionné. Son usage en hydrobiologie', Revue de Statistique Appliquée 36(1), 39-54.
2. Chessel, D., Dufour, A. B. & Thioulouse, J. (2004), 'The ade4 Package - I: One-table Methods', R News 4(1), 5-10.
3. DAPD, (1997), Población, estratificación y aspectos socioeconómicos de Santa Fe de Bogotá, Departamento Administrativo de Planeación Distrital, Bogotá, Colombia.
4. Dahl, D. B. (2006), xtable: Export Tables to LaTeX or HTML. David B. Dahl with contributions from many others. R package version 1.4-2..
5. Dalgaard, P. (2002), Introductory Statistics with R, Springer, New York, United States.
6. Dalgaard, P. (2005), ISwR: Introductory Statistics with R. R package version 1.0-6.
7. De Castro, R. (2003), El universo LaTeX, segunda edn, Universidad Nacional de Colombia, Bogotá, Colombia language es.
8. Friendly, M. (1994), 'Mosaic Displays for Multi-Way Contingency Tables', Journal of the American Statistical Association 89(425), 190-200.
9. Hartigan, J. A. & Wong, M. A. (1979), 'A K-means Clustering Algorithm', Applied Statistics 28(100--108).
10. Husson, F., Lê, S. & Mazet, J. (2007), FactoMineR: Factor Analysis and Data Mining with R. R package version 1.05. *http://factominer.free.fr
11. Lebart, L. (2007), 'DTM. Data and Text Mining', Software. *http://ses.enst.fr/lebart/
12. Lebart, L., Morineau, A., Lambert, T. & Pleuvret, P. (1999), SPAD. Système Pour l'Analyse des Donèes, Paris, Francia. *http://www.spad.eu
13. Lebart, L., Morineau, A. & Piron, M. (1995), Statisitique exploratoire multidimensionnelle, Dunod, Paris, France.
14. Ligges, U. (2006), 'R Help Desk: Accessing the Sources', R News 6(4), 43-45.
15. Ligges, U. & Murdoch, D. (2005), 'R Help Desk: Make 'R CMD' Work under Windows - an Example', R News 5(2), 27-28.
16. Pardo, C. E. (1992), Análisis de la aplicación del método de Ward de clasificación jerárquica en el caso de variables cualitativas, Tesis de Maestría, Estadística, Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Matemáticas y Estadística, Bogotá, Colombia.
17. Pinheiro, J., Bates, D., DebRoy, S. & team., D. S. t. R. C. (2007), nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-83.
18. R Development Core Team, (2007a), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *http://www.R-project.org
19. R Development Core Team, (2007b), Writing R Extensions, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *http://www.R-project.org
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{PardoDel Campo07,
AUTHOR = {Campo Elías Pardo and Pedro César Del Campo}
TITLE = {{Combinación de métodos factoriales y de análisis de conglomerados en R: el paquete FactoClass}},
JOURNAL = {Revista Colombiana de Estadística},
YEAR = {2007},
volume = {30},
number = {2},
pages = {231-245}
}
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
Copyright (c) 2007 Revista Colombiana de Estadística
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).