Published
UNA NOTA ACERCA DE LA PRUEBA DE RAICES UNITARIAS EN LA COMPONENTE DE TENDENCIA NO OBSERVABLE DE UN MODELO ESTRUCTURAL
A NOTE ON TESTING FOR UNIT ROOTS IN THE UNOBSERVABLE TREND COMPONENT OF A STRUCTURAL MODEL
Keywords:
Modelos estructurales, raíces unitarias, procesos no observables (es)Structural models, Unit roots, Unobservable process (en)
Downloads
1Banco de la República. E-mail: egonzamo@banrep.gov.co
2Universidad Nacional de Colombia. E-mail:fhnietos@unal.edu.co
Testing for unit roots is a common practice in observable stochastic processes and there is abundant literature on this topic. However, sometimes, one is faced with the same problem but in the case where the processes of inter est are latent or unobservable. In this paper, empirical distributions of the usual unit-root test statistics are obtained for the trend component of some particular structural models, which are based on optimal predictions (as the observed data) of the trend stochastic process. It is found that these statis tical tests tend to be most powerful than the usual Dickey-Fuller tests.
Keywords: Structural models, Unit roots, Unobservable process.
Las pruebas de raíces unitarias son una práctica común en procesos estocásti cos observables y se encuentra literatura abundante sobre este tema. Sin embargo, en ocasiones, aunque el problema es el mismo, los procesos de interés son latentes o no observables. En este artículo se obtienen distribu ciones empíricas de las estadísticas de prueba usuales de raíces unitarias para el componente de tendencia de algunos modelos estructurales particulares, basadas en predicciones óptimas (como los datos observados) del proceso es tocástico de tendencia. Se encuentra que estas pruebas estadísticas tienden a ser más potentes que las pruebas usuales de Dickey-Fuller.
Palabras Clave: Modelos estructurales, raíces unitarias, procesos no obser- vables.
Texto completo disponible en PDF
References
1. Bell, W. R. (1984), "Signal extraction for nonstationary time series", The Annals of Statistics 12, 646- 664.
2. Dickey, D. & Fuller, W. (1979), "Distributions of the estimators for autoregressive time series with a unit root", Journal of the American Statistical Association 74, 427- 431.
3. Fuller, W. (1996), Introduction to Statistical Time Series, 2 edn, John Wiley & Sons, New York.
4. Harvey, A. (1989), Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge University Press, Cambridge.
5. Harvey, A. (2001), "Testing in unobserved components models", Journal of Forecasting 20, 1- 19.
6. Kaiser, R. & Maravall, A. (2001), Measuring business cycles in economic time series, in "Lecture Notes in Statistics", Springer-Verlag, New York.
7. Koopman, S., Harvey, A. C., Doornik, J. & Shephard, N. (1995), STAMP 5.0 Structural Time Series Analyzer, Modeler and Predictor, Chapman and Hall, London.
8. Kwiatkowski, D., Phillips, P. S. & Shin, Y. (1992), "Testing the null hypothesis of stationarity against the alternative of a unit root: Economic time series have a unit root?", Journal of Econometrics 54, 159- 178.
9. Nyblom, J. & Makelainen, T. (1983), "Comparisons of tests for the presence of random walk coefficients in a simple linear model", Journal of the American Statistical Association 78(384).
10. Phillips, P. & Perron, P. (1988), "Testing for a unit root in time series regression", Biometrika 75, 335- 346.
11. Schmidt, P. & Phillips, P. C. B. (1992), "LM test for a unit root in the presence of deterministic trends", Oxford Bulletin of Economics and Statistics 54, 257- 287.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
Copyright (c) 2005 Revista Colombiana de Estadística

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).