Identificación de la diferencia angular con unidades de medida fasorial (PMU) en un sistema eléctrico de distribución de energía renovable
Identification of angular difference with phasorial measuring units (PMU) in a renewable energy distribution electrical system
DOI:
https://doi.org/10.15446/sicel.v11.109321Palabras clave:
Phasor unit measurement, Difference angular, Solar energy, Machine Learning Clasification, Distribution power system (es)Unidad de Medida Fasorial, Diferencia Angular, Energía Solar, Sistema de distribución, Aprendizaje de Máquina (en)
Descargas
El comportamiento angular del sistema eléctrico tiene un interés de estudio por la diferencia de fase entre los ángulos de las tensiones en dos nodos, si estos están interconectados en la red eléctrica permite establecer un indicador de la estabilidad del sistema. En este artículo se presenta la implementación de una aplicación de red WAMS para el estudio de la diferencia angular en el sistema eléctrico del Campus Universitario, esto mediante la aplicación de un algoritmo de categorización que permitió agrupar eventos relacionados con la diferencia angular entre dos puntos de la red relacionados con un sistema de generación solar, esta aplicación permitió encontrar que el ángulo de fase de la tensión entre los dos nodos donde se ubican las PMUs tiene oscilaciones asociadas a la generación fotovoltaica, caracterizando la región de operación del sistema relacionada con su diferencia angular en un nodo del sistema..
The angular behavior of the electrical system has an interest of study by the phase difference between the angles of the voltages at two nodes, if these are interconnected in the electrical network allows to establish an indicator of the stability of the system. This article presents the implementation of a WAMS network application for the study of the angular difference in the electrical system of the University Campus, this by means of the application of a categorization algorithm that allowed grouping events related to the angular difference between two points of the network related to a solar generation system, this application allowed finding that the phase angle of the voltage between the two nodes where the PMUs are located has oscillations associated to the photovoltaic generation, characterizing the region of operation of the system related to its angular difference in a node of the system.
Referencias
H. H. Alhelou, A. Y. Abdelaziz, and P. Siano, Wide Area Power Systems Stability, Protection, and Security. 2021.
A. G. Phadke and T. Bi, “Phasor measurement units, WAMS, and their applications in protection and control of power systems,” J. Mod. Power Syst. Clean Energy, vol. 6, no. 4, pp. 619–629, 2018, doi: 10.1007/s40565-018-0423-3.
R. Arghandeh et al., “Synchrophasor Monitoring for Distribution Systems: Technical Foundations and Applications,” North Am. SynchroPhasor Initiat., no. January, pp. 1–62, 2018, doi: 10.13140/RG.2.2.35267.04649.
A. G. Phadke and T. Bi, “Phasor measurement units, WAMS, and their applications in protection and control of power systems,” J. Mod. Power Syst. Clean Energy, vol. 6, no. 4, pp. 619–629, 2018, doi: 10.1007/s40565-018-0423-3.
J. F. Hauer, N. B. Bhatt, K. Shah, and S. Kolluri, “Performance of ‘WAMS East’ in providing dynamic information for the North East Blackout of August 14, 2003,” 2004 IEEE Power Eng. Soc. Gen. Meet., vol. 2, pp. 1685–1690, 2004, doi: 10.1109/pes.2004.1373161.
J. Y. Cai, Z. Huang, J. Hauer, and K. Martin, “Current status and experience of WAMS implementation in North America,” Proc. IEEE Power Eng. Soc. Transm. Distrib. Conf., vol. 2005, pp. 1–7, 2005, doi: 10.1109/TDC.2005.1546889.
Q. Yang, T. Bi, and J. Wu, “WAMS implementation in China and the challenges for bulk power system protection,” 2007 IEEE Power Eng. Soc. Gen. Meet. PES, pp. 0–5, 2007, doi: 10.1109/PES.2007.385835.
X. Fan, F. Xiong, and L. Jiang, “PMU-WAMS research and application in Brazil,” Glob. Energy Interconnect., vol. 2, no. 1, pp. 85–93, 2019, doi: 10.1016/j.gloei.2019.06.011.
G. Rivera and A. D. La Torre, “Estrategias para la Implementación de un Sistema de Monitoreo de Área Extendida WAMS en el Sistema Nacional Interconectado del Ecuador,” Rev. Técnica “Energía,” vol. 9, no. 1, pp. 34–43, 2013, doi: 10.37116/revistaenergia.v9.n1.2013.134.
R. León, J. E. Gomez, J. W. Gonzalez, G. J. Lopez, and M. Osorio, “Sistema de Respaldo Nacional ante Eventos de Gran Magnitud – SIRENA,” Investig. y Desarro., vol. 1, p. 8, 2007, [Online]. Available: http://www.xm.com.co/BoletinXM/PublishingImages/Boletin256/PaperXMSirena_PremioAsocodisCNO.pdf.
A. Nechifor, P. Regulski, D. Cai, and V. Terzija, “Development of a flexible laboratory testing platform for assessing steady-state and transient performance of WAMS,” 2011 IEEE Int. Work. Appl. Meas. Power Syst. AMPS 2011 - Proc., pp. 62–67, 2011, doi: 10.1109/AMPS.2011.6090442.
T. D. Duong, S. D’Arco, and J. O. Tande, “Architecture and laboratory implementation of a testing platform for Wide Area Monitoring Systems,” IECON Proc. (Industrial Electron. Conf., vol. 2019-Octob, pp. 6419–6424, 2019, doi: 10.1109/IECON.2019.8927319.
C. Lopez de Alba, “Implementación de un sistema de monitoreo de área amplia a escala de laboratorio para sistemas eléctricos de potencia Implementation of a Wide Area Monitoring System on a laboratory scale for Power Systems,” Ing. Investig. y Tecnol., no. número 2, pp. 195–207, 2019.
A. V. Rodionov, D. N. Popov, A. S. Sosnin, A. V. Mokeev, and A. I. Popov, “Extending Functionality and Application Scope of Synchronised Phasor Measurement Technology,” 2018 Int. Youth Sci. Tech. Conf. Relay Prot. Autom. RPA 2018, pp. 1–15, 2018, doi: 10.1109/RPA.2018.8537229.
“Phasor Measurement Unit using GPRS Wireless Connectivity.”
A. G. Phadke and J. S. Thorp, Synchronized Phasor Measurements and Their Applications (Power Electronics and Power Systems). 2008.
A. Popelka, D. Jurik, P. Marvan, and V. Povolny, “Advanced applications of WAMS,” IET Conf. Publ., vol. 2013, no. 615 CP, pp. 10–13, 2013, doi: 10.1049/cp.2013.1082.
“Prototype Phasor Measurement System for a Generator Synchronic.”
G. C. Patil and A. G. Thosar, “Application of synchrophasor measurements using PMU for modern power systems monitoring and control,” 6th Int. Conf. Comput. Power, Energy, Inf. Commun. ICCPEIC 2017, vol. 2018-January, pp. 754–760, 2018, doi: 10.1109/ICCPEIC.2017.8290464.
X. Xie, Y. Xin, J. Xiao, J. Wu, and Y. Han, “WAMS applications in chinese power system,” IEEE Power Energy Mag., vol. 4, no. 1, pp. 54–63, 2006, doi: 10.1109/MPAE.2006.1578532.
L. Ramesh, S. P. Chowdhury, and S. Chowdhury, “Wide area monitoring protection and control - A comprehensive application review,” IET Conf. Publ., vol. 2010, no. 558 CP, 2010, doi: 10.1049/cp.2010.0325.
D. L. Alvarez, J. A. Rosero, F. Faria da Silva, C. L. Bak, and E. E. Mombello, “Dynamic line rating — Technologies and challenges of PMU on overhead lines: A survey,” 2016 51st Int. Univ. Power Eng. Conf., pp. 1–6, 2016, doi: 10.1109/UPEC.2016.8114069.
A. Mutule, E. Grebesh, I. Oleinikova, and A. Obushevs, “Methodology for transmission line capacity assessement based on PMU data,” 19th Power Syst. Comput. Conf. PSCC 2016, no. 79, pp. 4–8, 2016, doi: 10.1109/PSCC.2016.7540986.
X. Wang, “Estimating dynamic load parameters from ambient PMU measurements,” IEEE Power Energy Soc. Gen. Meet., vol. 2018-January, no. 1, pp. 1–5, 2018, doi: 10.1109/PESGM.2017.8273913.
S. D. Chowdhury and N. Senroy, “PMU data based online parameter estimation of synchronous generator,” 2016 IEEE 6th Int. Conf. Power Syst. ICPS 2016, 2016, doi: 10.1109/ICPES.2016.7584050.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2023 Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.