Power aggregator in active distribution networks using IoT
Agregador de potencia en redes de distribución activas usando IoT
Palabras clave:
Active Distribution Network, Distribution systems, Inverter Based Generation (IBG), aggregator, quasi-dynamic simulation, internet of the things (en)Redes de distribución activa, Agregación de potencia, Despacho económico, Método de multiplicadores de dirección alternada, Simulación cuasi-dinámica, Internet de las cosas (es)
Descargas
This paper presents an Internet of Things (IoT) architecture for power aggregation of energy resources in active distribution networks. Two types of algorithms are evaluated and compared, namely, centralized and decentralized control. The former is based on a real-time estimation of the demand and subsequent optimization. The latter is based on the alternating direction method of multipliers (ADMM). Both algorithms were evaluated in an IoT platform conformed by agents implemented in a series of small single-board computers based on the Raspberry Pi technology, connected to a centralized computer that emulates the grid. This platform allows realistically evaluating the algorithms considering the effect of communications. The main grid considers power losses and the dynamics of the inverter-based renewable resources using a quasi-dynamic simulation. This type of simulation can be considered as real-time for this application. The platform demonstrated to be flexible and give a real view of the practical problems that may be faced by aggregators when implemented in a power distribution network.
Este documento presenta una arquitectura de Internet de las cosas (IoT por sus siglas en inglés) para la agregación de recursos energéticos en redes de distribución activas. Se evalúan y comparan dos tipos de algoritmos, a saber, control centralizado y descentralizado. El primero se basa en una estimación en tiempo real de la demanda y su posterior optimización. El segundo, se basa en el método de multiplicadores de dirección alterna (ADMM). Ambos algoritmos fueron evaluados en una plataforma IoT conformada por agentes implementados en una serie de pequeñas computadoras monoplaca basadas en la tecnología Raspberry Pi, conectadas a una computadora centralizada que emula la red. Esta plataforma permite evaluar de forma realista los algoritmos considerando el efecto de las comunicaciones. La red principal considera las pérdidas de energía y la dinámica de los recursos renovables basados en inversores mediante una simulación cuasi-dinámica. Este tipo de simulación puede considerarse tiempo real para esta aplicación. La plataforma demostró ser flexible y brindar una visión real de los problemas prácticos que pueden enfrentar los agregadores cuando se implementan en una red activa.
Referencias
K. Alshehri, M. Ndrio, S. Bose and T. Başar, "Quantifying Market Efficiency Impacts of Aggregated Distributed Energy Resources," in IEEE Transactions on Power Systems, vol. 35, no. 5, pp. 4067-4077, Sept. 2020, doi: 10.1109/TPWRS.2020.2979997.
Cigre Colombia C4 working group. “Control en Microrredes de A.C: Control Jerárquico, Tecnologías y Normativa” in CIGRE, available online: http://www.cigrecolombia.org/Documents/Documentos-t%c3%a9cnicos/DT-6.2-Control
T. Morstyn, A. Teytelboym, and M. D. Mcculloch, "Bilateral Contract Networks for Peer-to-Peer Energy Trading," in IEEE Transactions on Smart Grid, vol. 10, no. 2, pp. 2026-2035, March 2019, doi: 10.1109/TSG.2017.2786668.
N. Patrizi, S. K. Latouf, E. E. Tsiropoulou, and S. Papavassiliou, "Prosumer-Centric Self-Sustained Smart Grid Systems", in IEEE Systems Journal, vol. 16, no. 4, pp. 6042-6053, Dec. 2022, doi: 10.1109/JSYST.2022.3156877.
G. E. Asimakopoulou and N. D. Hatziargyriou, "Evaluation of Economic Benefits of DER Aggregation," in IEEE Transactions on Sustainable Energy, vol. 9, no. 2, pp. 499-510, April 2018, doi: 10.1109/TSTE.2017.2743349.
C. S. Edrington, M. Steurer, J. Langston, T. El-Mezyani and K. Schoder, "Role of Power Hardware in the Loop in Modeling and Simulation for Experimentation in Power and Energy Systems," in Proceedings of the IEEE, vol. 103, no. 12, pp. 2401-2409, Dec. 2015, doi: 10.1109/JPROC.2015.2460676.
Z. R. Ivanović, E. M. Adžić, M. S. Vekić, S. U. Grabić, N. L. Čelanović and V. A. Katić, "HIL Evaluation of Power Flow Control Strategies for Energy Storage Connected to Smart Grid Under Unbalanced Conditions," in IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4699-4710, Nov. 2012, doi: 10.1109/TPEL.2012.2184772.
A. B. C. De Farias, R. S. Rodrigues, A. Murilo, R. V. Lopes and S. Avila, "Low-Cost Hardware-in-the-Loop Platform for Embedded Control Strategies Simulation," in IEEE Access, vol. 7, pp. 111499-111512, 2019, doi: 10.1109/ACCESS.2019.2934420.
A. Garcés-Ruiz, “Power Flow in Unbalanced Three-Phase Power Distribution Networks Using Matlab: Theory, analysis, and quasi-dynamic Simulation”, Ingenieria., vol. 27, no. 3, p. e19252, Aug. 2022.
Catro, L; Bravo, M; Ríos, M, A; García, C, A; Ramírez, D, A; Pérez, S, M; Garcés, A; Bueno, M; Mora, J.J; “Control jerárquico en micro-redes AC” Colección trabajos de investigación, Editorial UTP. ISBN 978-958-722-553-2.
Ramirez, D.A; Garcés, A; Mora, J.J, "A Convex Approximation for the Tertiary Control of Unbalanced Microgrids", in Electric Power Systems Research, vol. 199, no. 107423, 2021, doi: 10.1016/j.epsr.2021.107423.
Berry, R.A, "On Proportional Power Sharing Mechanisms for Secondary Spectrum Markets", in Northwestern University, Dept. of EECS.
Chen, G, Yang Q, "An ADMM-Based Distributed Algorithm for Economic Dispatch in Islanded Microgrids", in IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 9, SEPTEMBER 2018.
Stomberg, Gösta, Engelmann, Alexander and Faulwasser, Timm. "A compendium of optimization algorithms for distributed linear-quadratic MPC" at - Automatisierungstechnik, vol. 70, no. 4, 2022, pp. 317-330. https://doi.org/10.1515/auto-2021-0112
Garcés, A, "Optimización convexa: Aplicaciones en operación y dinámica de sistemas de potencia" Colección textos académicos, Editorial UTP. ISBN 978-958-722-466-5.
Abrahamsen, F.E.; Ai, Y.; Cheffena, M. Communication Technologies for Smart Grid: A Comprehensive Survey. Sensors 2021, 21, 8087.
B. Aljafari, S. Vasantharaj, V. Indragandhi, and R. Vaibhav, “Optimization of dc, ac, and hybrid ac/dc microgrid-based iot systems: A review, ” Energies, vol. 15, no. 18, 2022.
Papathanassiou S; Hatziargyriou N; Strunz K. A benchmark low voltage microgrid network. In: CIGRE symposium on power systems with dispersed generation. 2005.
Sun, M; Zou, S; Gou, Y; Nian, X; "Projection-based distributed economic dispatch algorithm considering communication delays under switching topologies" in International Journal of Electrical Power & Energy Systems, vol. 152, no. 109266, 2023, doi: 10.1016/j.ijepes.2023.109266.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2023 Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.