Publicado

2024-01-30

Operating Reserve Demand Curves for the Integration of Variable Renewable Energies in the Chilean Power System

Curvas de Demanda para Reserva Operativa de modo de Integrar Energía Renovable Variable en el Sistema Eléctrico Chileno

DOI:

https://doi.org/10.15446/sicel.v11.109698

Palabras clave:

Operational Reserves, Adequacy, Ancillary Services, Wind Generation, Solar Generation (en)
Reservas Operativas, Suficiencia, Servicios Complementarios, Generación Eólica, Generación Solar (es)

Descargas

Autores/as

  • sergio Díaz Pizarro universidad técnica federico santa maría
  • Esteban Gil Universidad Técnica Federico Santa María, Chile
  • Jorge Berríos Universidad Técnica Federico Santa María, Chile

When incorporating non-dispatchable renewable sources into an electric power system, it's important to consider how this affects the optimal definition of operating reserves. In order to ensure effective short and long-term investments in new capacity, appropriate price signals must be put in place. The mechanisms used to define the optimal price of new capacities associated with operational reserve must reflect the temporality of the reliability and safety of the electric power system.

Society places a high value on electricity consumption, as evidenced by the Value of Lost Load (VOLL). Therefore, the incremental value of reserves that reduce the probability of a loss event (Loss of Load Probability - LOLP) must be greater than zero when reserves are not abundant.

To evaluate the adequate reserve requirements that a system needs, operating reserve demand curves (ORDC) are an explicit and dynamic administrative mechanism. They consider multiple sources of uncertainty in the system that cause imbalances between generation and demand, setting a dynamic price based on its contribution to improving the reliability of the system. This provides effective signals of the actual condition of the scenario through its impact on marginal cost. In a market such as the Chilean, introducing this strategy allows operators to increase prices during scarcity events as prices are determined by the marginal cost of the most expensive generation unit operating in the system.

Introducing this scarcity mechanism will substantially impact investment incentives, delivering appropriate signals to encourage and support new technologies linked to the new path that Chile is advancing. This paper proposes a methodology to optimally incorporate renewable sources such as wind and sun into systems with hydrothermal characteristics, such as the Chilean one.

Al incorporar fuentes renovables no gestionables en un sistema de energía eléctrica, es importante considerar cómo esto afecta la definición óptima de las reservas operativas. Con el fin de garantizar inversiones efectivas a corto y largo plazo en nueva capacidad, es necesario establecer señales de precio adecuadas. Los mecanismos utilizados para definir el precio óptimo de nuevas capacidades asociadas a las reservas operativas deben reflejar la temporalidad de la confiabilidad y seguridad del sistema de energía eléctrica.

La sociedad valora en gran medida el consumo de electricidad, como lo demuestra el Valor de la Pérdida de Carga (VOLL). Por lo tanto, el valor incremental de las reservas que reducen la probabilidad de un evento de pérdida (Probabilidad de Pérdida de Carga - LOLP) debe ser mayor que cero cuando las reservas no son abundantes.

Para evaluar los requisitos de reserva adecuados que un sistema necesita, las curvas de demanda de reservas operativas (ORDC) son un mecanismo administrativo explícito y dinámico. Consideran múltiples fuentes de incertidumbre en el sistema que causan desequilibrios entre la generación y la demanda, estableciendo un precio dinámico basado en su contribución para mejorar la confiabilidad del sistema. Esto proporciona señales efectivas sobre la condición real del escenario a través de su impacto en el costo marginal. En un mercado como el chileno, la introducción de esta estrategia permite a los operadores aumentar los precios durante eventos de escasez, ya que los precios se determinan por el costo marginal de la unidad de generación más costosa en funcionamiento en el sistema.

La introducción de este mecanismo de escasez tendrá un impacto sustancial en los incentivos de inversión, proporcionando señales adecuadas para fomentar y respaldar nuevas tecnologías vinculadas al nuevo camino que Chile está avanzando. Este artículo propone una metodología para incorporar de manera óptima fuentes renovables, como la energía eólica y solar, en sistemas con características hidrotérmicas, como el chileno.

Referencias

W. W. Hogan, “Electricity scarcity pricing through operating reserves,” Economics of Energy & Environmental Policy, vol. 2, no. 2, pp. 65–86, 2013.

A. Papavasiliou and Y. Smeers, “Remuneration of Flexibility using Operating Reserve Demand Curves: A Case Study of Belgium.,” Energy Journal, vol. 38, no. 6, 2017.

D. S. Kirschen and G. Strbac, Fundamentals of power system economics. John Wiley & Sons, 2004.

H. Aghaie, “Resource Adequacy and Optimal Investment in Energy-only Markets,” in 33rd USAEE/IAEE North American Conference USAEE/IAEE.

W. W. Hogan, “On an ‘Energy only’ electricity market design for resource adequacy,” 2005.

D. Chattopadhyay and T. Alpcan, “Capacity and energy-only markets under high renewable penetration,” IEEE Transactions on Power Systems, vol. 31, no. 3, pp. 1692–1702, 2016.

C. Byers, T. Levin, and A. Botterud, “Capacity market design and renewable energy: Performance incentives, qualifying capacity, and demand curves,” The Electricity Journal, vol. 31, no. 1, pp. 65–74, 2018.

D. P. Brown, “Capacity payment mechanisms and investment incentives in restructured electricity markets,” Energy Economics, vol. 74, pp. 131–142, 2018.

A. Galetovic, C. M. Muñoz, and F. A. Wolak, “Capacity payments in a cost-based wholesale electricity market: the case of Chile,” The Electricity Journal, vol. 28, no. 10, pp. 80–96, 2015.

P. Cramton and S. Stoft, “A capacity market that makes sense,” The Electricity Journal, vol. 18, no. 7, pp. 43–54, 2005.

S. Stoft, Power system economics: designing markets for electricity. Wiley-Interscience, 2002.

P. Cramton, A. Ockenfels, S. Stoft, and others, “Capacity market fundamentals,” Economics of Energy & Environmental Policy, vol. 2, no. 2, pp. 27–46, 2013.

D. Newbery, “Missing money and missing markets: Reliability, capacity auctions and interconnectors,” Energy Policy, vol. 94, pp. 401–410,

W. W. Hogan, “On an ‘Energy only’ electricity market design for resource adequacy,” 2005.

P. C. Cramton and S. Stoft, “The convergence of market designs for adequate generating capacity with special attention to the CAISO’s resource adequacy problem,” 2006.

M. Hogan, “Follow the missing money: ensuring reliability at least cost to consumers in the transition to a low-carbon power system,” The Electricity Journal, vol. 30, no. 1, pp. 55–61, 2017.

G. Zöttl, “On optimal scarcity prices,” International Journal of Industrial Organization, vol. 29, no. 5, pp. 589–605, 2011.

R. Bajo-Buenestado, “Welfare implications of capacity payments in a price-capped electricity sector: A case study of the Texas market (ERCOT),” Energy Economics, vol. 64, pp. 272–285,

S. Newell, K. Spees, J. Pfeifenberger, R. Mudge, M. DeLucia, and R. Carlton, “ERCOT investment incentives and resource adequacy,” The Brattle Group, prepared for the Electric Reliability Council of Texas, 2012 [Online]. Available: http://files.brattle.com/files/6245_ercot_investment_incentives_and_resource_adequacy_newell_spees_pfeifenberger_mudge_ercot_june_2_2012.pdf

P. Cramton, A. Ockenfels, S. Stoft, and others, “Capacity market fundamentals,” Economics of Energy & Environmental Policy, vol. 2, no. 2, pp. 27–46, 2013.

D. Harbord and M. Pagnozzi, “Second Review of Firm Energy Auctions in Colombia,” Report to the Colombian Comisión de Regulación de Energ’ia y Gas, 2012.

P. C. Bhagwat, L. J. de Vries, and B. F. Hobbs, “Expert survey on capacity markets in the US: Lessons for the EU,” Utilities Policy, vol. 38, pp. 11–17, 2016.

IRENA, “Renewable power generation costs in 2017: Key findings and executive summary,” Executive Summary, 2018 [Online]. Available: http://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018_summary.pdf?la=en&hash=6A74B8D3F7931DEF00AB88BD3B339CAE180D11C3

H. Hӧschle, “Capacity Mechanisms in Future Electricity Markets,” 2018.

N. Fabra, “A primer on capacity mechanisms,” Energy Economics, vol. 75, pp. 323–335, 2018.

P. C. Bhagwat, L. J. de Vries, and B. F. Hobbs, “Expert survey on capacity markets in the US: Lessons for the EU,” Utilities Policy, vol. 38, pp. 11–17,

D. Harbord and M. Pagnozzi, “Second Review of Firm Energy Auctions in Colombia,” Report to the Colombian Comisión de Regulación de Energ’ia y Gas, 2012.

E. J. L. Pérez and L. M. H. Olascuaga, “Analysis of the scarcity price: Lessons and recommendations from the Colombian Electricity Market,” in 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), 2016, pp. 1–6.

J. Chang, M. Geronimo, R. Broehm, Y. Broehm, and R. Sweet, “Shortage Pricing in North American Wholesale Electricity Markets,” The Brattle Group, 2018.

R. Moye and S. Meyn, “The Use of Marginal Energy Costs in the Design of US Capacity Markets,” in Proceedings of the 51st Hawaii International Conference on System Sciences, 2018.

E. Seppälä, “Pricing of Power System Balancing Resources and Imbalances in Scarcity Situations,” 2017.

K. Skytte, C. Bergaentzlé, J. K. Sekamane, and J. Katz, “Flexible electricity markets for a decarbonised energy system,” in Eurelectric-florence school of regulation conference, 2017.

R. Markets, “Market design and regulation during the transition to low-carbon power systems,” International Energy Agency: Paris, France, 2016.

J. Chang, M. Geronimo, R. Broehm, Y. Broehm, and R. Sweet, “Shortage Pricing in North American Wholesale Electricity Markets,” The Brattle Group, 2018.

M. A. Ortega-Vazquez and D. S. Kirschen, “Estimating the spinning reserve requirements in systems with significant wind power generation penetration,” IEEE Transactions on Power Systems, vol. 24, no. 1, pp. 114–124, 2009.

V. Dvorkin, S. Delikaraoglou, and J. M. Morales, “Setting Reserve Requirements to Approximate the Efficiency of the Stochastic Dispatch,” IEEE Transactions on Power Systems, 2018.

I. Krad, E. Ibanez, E. Ela, and W. Gao, “Operational Impacts of Operating Reserve Demand Curves on Production Cost and Reliability,” 2015.

C. Liu, J. Guo, H. Hui, and Y. Fu, “Modeling of Operating Reserve Demand Curves and System-Level Price Adders in Real-Time Energy-Only Market,” IEEE Transactions on Power Systems, vol. 33, no. 5, pp. 4797–4808, 2018.

C. Liu, J. Guo, H. Hui, D. Maggio, R. Surendran, J. Chen, D. Thompson, Z. Chu, and S. Chang, “A mathematical model for electricity scarcity pricing in ERCOT real-time energy-only market,” in 2017 IEEE Power & Energy Society General Meeting, 2017, pp. 1–5.

J. Ortega and D. Watts, “Operating Reserves And Unit Commitment Considering Variable Renewable Energies: An Academic Review,” IEEE Latin America Transactions, vol. 15, no. 11, pp. 2108–2119, 2017.

J. Chang, M. Geronimo, R. Broehm, Y. Broehm, and R. Sweet, “Shortage Pricing in North American Wholesale Electricity Markets,” The Brattle Group, 2018.

J. Chang, M. Geronimo, R. Broehm, Y. Broehm, and R. Sweet, “Shortage Pricing in North American Wholesale Electricity Markets,” The Brattle Group, 2018.

E. Ela, M. Milligan, A. Bloom, A. Botterud, A. Towsend, and T. Levin, “Electricity Markets with Incresing Levels of Renewable Generation: Structure, Operation, Agent-based Simulation, and Emerging Designs,” Fernando Lopes and Helder Coelho, Ed. Elsevier, 2018.

A. Papavasiliou, Y. Smeers, G. Bertrand, and others, “An Extended Analysis on the Remuneration of Capacity under Scarcity Conditions,” Economics of Energy & Environmental Policy, vol. 7, no. 2, 2018.

E. Staff and W. Hogan, “Back Cast of Interim Solution B+ to Improve Real-Time Scarcity Pricing White Paper,” 2013.

E. Bucaj, “278/10 - Value of Lost Load Review Process,” ELEXON, 2018 [Online]. Available: https://www.elexon.co.uk/wp-content/uploads/2017/09/33_278_10_VOLL-Review-Process-Paper-v1.0.pdf

Ofgen, “Analysis of the first phase of the Electricity Balancing Significant Code Review,” Ofgem, 2018 [Online]. Available: https://www.ofgem.gov.uk/system/files/docs/2018/08/analysis_of_the_first_phase_of_the_electricity_balancing_significant_code_review_as_final_version_publication.pdf

R. Wakeland, “Fundamental Problems with ERCOT’s Operating Reserve Demand Curve and a Proposed Solution,” USAEE Working Paper, 2018 [Online]. Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3193493

Comisión Nacional de Energía, Resolución Exenta del 77 de 27 de febrero 2023. Res-CNE-77.pdf

Cómo citar

APA

Díaz Pizarro, sergio, Gil, E. y Berríos, J. (2024). Operating Reserve Demand Curves for the Integration of Variable Renewable Energies in the Chilean Power System. Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL, 11. https://doi.org/10.15446/sicel.v11.109698

ACM

[1]
Díaz Pizarro, sergio, Gil, E. y Berríos, J. 2024. Operating Reserve Demand Curves for the Integration of Variable Renewable Energies in the Chilean Power System. Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL. 11, (ene. 2024). DOI:https://doi.org/10.15446/sicel.v11.109698.

ACS

(1)
Díaz Pizarro, sergio; Gil, E.; Berríos, J. Operating Reserve Demand Curves for the Integration of Variable Renewable Energies in the Chilean Power System. SICEL 2024, 11.

ABNT

DÍAZ PIZARRO, sergio; GIL, E.; BERRÍOS, J. Operating Reserve Demand Curves for the Integration of Variable Renewable Energies in the Chilean Power System. Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL, [S. l.], v. 11, 2024. DOI: 10.15446/sicel.v11.109698. Disponível em: https://revistas.unal.edu.co/index.php/SICEL/article/view/109698. Acesso em: 8 feb. 2025.

Chicago

Díaz Pizarro, sergio, Esteban Gil, y Jorge Berríos. 2024. «Operating Reserve Demand Curves for the Integration of Variable Renewable Energies in the Chilean Power System». Simposio Internacional Sobre La Calidad De La Energía Eléctrica - SICEL 11 (enero). https://doi.org/10.15446/sicel.v11.109698.

Harvard

Díaz Pizarro, sergio, Gil, E. y Berríos, J. (2024) «Operating Reserve Demand Curves for the Integration of Variable Renewable Energies in the Chilean Power System», Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL, 11. doi: 10.15446/sicel.v11.109698.

IEEE

[1]
sergio Díaz Pizarro, E. Gil, y J. Berríos, «Operating Reserve Demand Curves for the Integration of Variable Renewable Energies in the Chilean Power System», SICEL, vol. 11, ene. 2024.

MLA

Díaz Pizarro, sergio, E. Gil, y J. Berríos. «Operating Reserve Demand Curves for the Integration of Variable Renewable Energies in the Chilean Power System». Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL, vol. 11, enero de 2024, doi:10.15446/sicel.v11.109698.

Turabian

Díaz Pizarro, sergio, Esteban Gil, y Jorge Berríos. «Operating Reserve Demand Curves for the Integration of Variable Renewable Energies in the Chilean Power System». Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL 11 (enero 30, 2024). Accedido febrero 8, 2025. https://revistas.unal.edu.co/index.php/SICEL/article/view/109698.

Vancouver

1.
Díaz Pizarro sergio, Gil E, Berríos J. Operating Reserve Demand Curves for the Integration of Variable Renewable Energies in the Chilean Power System. SICEL [Internet]. 30 de enero de 2024 [citado 8 de febrero de 2025];11. Disponible en: https://revistas.unal.edu.co/index.php/SICEL/article/view/109698

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

108

Descargas

Los datos de descargas todavía no están disponibles.