Modelo de programación lineal entera mixta para optimización del tamaño del conductor en sistemas de distribución considerando la integración de comunidades energéticas locales
Mixed-integer linear programming model for optimal conductor sizing in distribution systems considering the integration of local energy communities
DOI:
https://doi.org/10.15446/sicel.v11.109889Palabras clave:
Comunidades energéticas locales, programación lineal entera mixta, selección óptima del tamaño del conductor (es)Local energy communities, mixed-integer linear programming, optimal conductor size selection (en)
Descargas
Este artículo presenta un modelo de programación lineal entera mixta para resolver el problema de selección óptima del tamaño del conductor en sistemas de distribución radial considerando la integración de comunidades energéticas locales. La operación en estado estable del sistema de distribución basado en inyecciones de corriente se modela utilizando técnicas de linealización. La formulación propuesta considera la presencia de comunidades energéticas locales y restricciones operativas tales como límites de magnitud de voltaje y corriente. La formulación presentada se probó en un sistema de distribución utilizado en la literatura especializada. Los resultados muestran la eficiencia del método y demuestran que el modelo puede ser utilizado como solución del problema de selección óptima del tamaño del conductor.
This paper presents a mixed-integer linear programming model to solve the optimal conductor sizing problem in radial distribution systems considering the integration of local energy communities. The steady-state operation of the current injection-based distribution system is modeled using linearization techniques. The proposed formulation considers the presence of energy communities and operational constraints such as voltage and current magnitude limits. The proposed formulation was tested on a distribution system used in specialized literature. The results demonstrate the effectiveness of the method and show that the model can be used as a solution to the optimal conductor size selection problem.
Referencias
E. C. da Silva, O. D. Melgar-Dominguez, and R. Romero, “Simultaneous distributed generation and electric vehicles hosting capacity assessment in electric distribution systems,” IEEE Access, vol. 9, pp. 110927–110939, 2021, doi: 10.1109/ACCESS.2021.3102684.
O. D. Melgar-Dominguez, M. Pourakbari-Kasmaei, M. Lehtonen, and J. R. Sanches Mantovani, “An economic-environmental asset planning in electric distribution networks considering carbon emission trading and demand response,” Electric Power Systems Research, vol. 181, p. 106202, Apr. 2020, doi: 10.1016/j.epsr.2020.106202.
L. Mehigan, J. P. Deane, B. P. Ó. Gallachóir, and V. Bertsch, “A review of the role of distributed generation (DG) in future electricity systems,” Energy, vol. 163, pp. 822–836, Nov. 2018, doi: 10.1016/j.energy.2018.08.022.
J. F. Franco, A. T. Procopiou, J. Quirós‐Tortós, and L. F. Ochoa, “Advanced control of OLTC‐enabled LV networks with PV systems and EVs,” IET Generation, Transmission & Distribution, vol. 13, no. 14, pp. 2967–2975, Jul. 2019, doi: 10.1049/iet-gtd.2019.0208.
C. Sabillon, J. F. Franco, M. J. Rider, and R. Romero, “Joint optimal operation of photovoltaic units and electric vehicles in residential networks with storage systems: A dynamic scheduling method,” International Journal of Electrical Power and Energy Systems, vol. 103, no. November 2017, pp. 136–145, 2018, doi: 10.1016/j.ijepes.2018.05.015.
M. K. Karami Darabi, H. G. Ganjeh Ganjehlou, A. Jafari, M. Nazari-Heris, G. B. B. Gharehpetian, and M. Abedi, “Evaluating the effect of demand response programs (DRPs) on robust optimal sizing of islanded microgrids,” Energies (Basel), vol. 14, no. 18, p. 5750, Sep. 2021, doi: 10.3390/en14185750.
R. Zafar, A. Mahmood, S. Razzaq, W. Ali, U. Naeem, and K. Shehzad, “Prosumer based energy management and sharing in smart grid,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 1675–1684, Feb. 2018, doi: 10.1016/j.rser.2017.07.018.
D. Rupolo, B. R. Pereira Junior, J. Contreras, and J. R. S. Mantovani, “A new parallel and decomposition approach to solve the medium- and low-voltage planning of large-scale power distribution systems,” International Journal of Electrical Power & Energy Systems, vol. 132, p. 107191, Nov. 2021, doi: 10.1016/j.ijepes.2021.107191.
J. M. Roldán-Fernández, M. Burgos-Payán, and J. M. Riquelme-Santos, “Impact of domestic PV systems in the day-ahead Iberian electricity market,” Solar Energy, vol. 217, pp. 15–24, Mar. 2021, doi: 10.1016/j.solener.2021.01.065.
V. Dudjak et al., “Impact of local energy markets integration in power systems layer: A comprehensive review,” Appl Energy, vol. 301, p. 117434, Nov. 2021, doi: 10.1016/j.apenergy.2021.117434.
J. Zapata Riveros, M. Kubli, and S. Ulli-Beer, “Prosumer communities as strategic allies for electric utilities: Exploring future decentralization trends in Switzerland,” Energy Res Soc Sci, vol. 57, p. 101219, Nov. 2019, doi: 10.1016/j.erss.2019.101219.
W. Tushar et al., “Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges,” Appl Energy, vol. 282, p. 116131, Jan. 2021, doi: 10.1016/j.apenergy.2020.116131.
M. L. Lode, G. te Boveldt, T. Coosemans, and L. Ramirez Camargo, “A transition perspective on energy communities: A systematic literature review and research agenda,” Renewable and Sustainable Energy Reviews, vol. 163, p. 112479, Jul. 2022, doi: 10.1016/j.rser.2022.112479.
T. Van der Schoor and B. Scholtens, “Power to the people: Local community initiatives and the transition to sustainable energy,” Renewable and Sustainable Energy Reviews, vol. 43, pp. 666–675, Mar. 2015, doi: 10.1016/j.rser.2014.10.089.
T. Vasco, “Microgrids: a Tool for a Grassroots Energy Transition,” 2015.
G. Dóci and E. Vasileiadou, “‘Let׳s do it ourselves’ Individual motivations for investing in renewables at community level,” Renewable and Sustainable Energy Reviews, vol. 49, pp. 41–50, Sep. 2015, doi: 10.1016/j.rser.2015.04.051.
M. I. Azim, S. A. Pourmousavi, W. Tushar, and T. K. Saha, “Feasibility Study of Financial P2P Energy Trading in a Grid-tied Power Network,” Sep. 2019.
L. Herenčić, P. Ilak, and I. Rajšl, “Effects of local electricity trading on power flows and voltage levels for different elasticities and prices,” Energies (Basel), vol. 12, no. 24, p. 4708, Dec. 2019, doi: 10.3390/en12244708.
J. Li, C. Zhang, Z. Xu, J. Wang, J. Zhao, and Y.-J. A. Zhang, “Distributed transactive energy trading framework in distribution networks,” IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 7215–7227, Nov. 2018, doi: 10.1109/TPWRS.2018.2854649.
B. P. Hayes, S. Thakur, and J. G. Breslin, “Co-simulation of electricity distribution networks and peer to peer energy trading platforms,” International Journal of Electrical Power & Energy Systems, vol. 115, p. 105419, Feb. 2020, doi: 10.1016/j.ijepes.2019.105419.
A. I. Nousdilis, A. I. Chrysochos, G. K. Papagiannis, and G. C. Christoforidis, “The impact of photovoltaic self-consumption rate on voltage levels in LV distribution grids,” in 2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), IEEE, 2017, pp. 650–655. doi: 10.1109/CPE.2017.7915249.
N. I. Yusoff, A. A. M. Zin, and A. Bin Khairuddin, “Congestion management in power system: A review,” in 2017 3rd International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET), IEEE, Apr. 2017, pp. 22–27. doi: 10.1109/PGSRET.2017.8251795.
H. Le Cadre, P. Jacquot, C. Wan, and C. Alasseur, “Peer-to-peer electricity market analysis: From variational to generalized Nash equilibrium,” Eur J Oper Res, vol. 282, no. 2, pp. 753–771, 2020.
O. M. Almenning, S. Bjarghov, and H. Farahmand, “Reducing neighborhood peak loads with implicit peer-to-peer energy trading under subscribed capacity tariffs,” in 2019 International Conference on Smart Energy Systems and Technologies (SEST), IEEE, Sep. 2019, pp. 1–6. doi: 10.1109/SEST.2019.8849067.
W. Tushar, T. K. Saha, C. Yuen, T. Morstyn, H. V. Poor, and R. Bean, “Grid influenced peer-to-peer energy trading,” IEEE Trans Smart Grid, vol. 11, no. 2, pp. 1407–1418, 2019.
T. Morstyn, A. Teytelboym, and M. D. McCulloch, “Designing decentralized markets for distribution system flexibility,” IEEE Transactions on Power Systems, vol. 34, no. 3, pp. 2128–2139, May 2019, doi: 10.1109/TPWRS.2018.2886244.
M. Resch, J. Bühler, B. Schachler, R. Kunert, A. Meier, and A. Sumper, “Technical and economic comparison of grid supportive vanadium redox flow batteries for primary control reserve and community electricity storage in Germany,” Int J Energy Res, vol. 43, no. 1, pp. 337–357, Jan. 2019, doi: 10.1002/er.4269.
T. Terlouw, T. AlSkaif, C. Bauer, and W. van Sark, “Optimal energy management in all-electric residential energy systems with heat and electricity storage,” Appl Energy, vol. 254, p. 113580, Nov. 2019, doi: 10.1016/j.apenergy.2019.113580.
J. M. Santos, P. S. Moura, and A. T. de Almeida, “Technical and economic impact of residential electricity storage at local and grid level for Portugal,” Appl Energy, vol. 128, pp. 254–264, Sep. 2014, doi: 10.1016/j.apenergy.2014.04.054.
D. Menniti, A. Pinnarelli, N. Sorrentino, A. Burgio, and G. Belli, “Management of storage systems in local electricity market to avoid renewable power curtailment in distribution network,” in 2014 Australasian Universities Power Engineering Conference (AUPEC), IEEE, Sep. 2014, pp. 1–5. doi: 10.1109/AUPEC.2014.6966536.
J. Guerrero, A. Chapman, and G. Verbic, “Decentralized P2P energy trading under network constraints in a low-voltage network,” Sep. 2018.
W. Tushar, T. K. Saha, C. Yuen, D. Smith, and H. V. Poor, “Peer-to-peer trading in electricity networks: An overview,” IEEE Trans Smart Grid, vol. 11, no. 4, pp. 3185–3200, Jul. 2020, doi: 10.1109/TSG.2020.2969657.
M. F. Islam, A. M. T. Oo, and S. H. Chowdhury, “The traditional power generation and transmission system: Some fundamentals to overcome challenges,” Smart Grids: Opportunities, Developments, and Trends, pp. 1–21, 2013.
J. Maleki Delarestaghi, A. Arefi, G. Ledwich, and A. Borghetti, “A distribution network planning model considering neighborhood energy trading,” Electric Power Systems Research, vol. 191, p. 106894, Feb. 2021, doi: 10.1016/j.epsr.2020.106894.
A. Tabares, J. F. Franco, M. Lavorato, and M. J. Rider, “Multistage long-term expansion planning of electrical distribution systems considering multiple alternatives,” IEEE Transactions on Power Systems, vol. 31, no. 3, pp. 1900–1914, May 2016, doi: 10.1109/TPWRS.2015.2448942.
J. F. Franco, M. J. Rider, and R. Romero, “A mixed-integer linear programming model for the electric vehicle charging coordination problem in unbalanced electrical distribution systems,” IEEE Trans Smart Grid, vol. 6, no. 5, pp. 2200–2210, Sep. 2015, doi: 10.1109/TSG.2015.2394489.
M. E. Baran and F. F. Wu, “Network reconfiguration in distribution systems for loss reduction and load balancing,” IEEE Transactions on Power Delivery, vol. 4, no. 2, pp. 1401–1407, Apr. 1989, doi: 10.1109/61.25627.
J. F. Franco, M. J. Rider, M. Lavorato, and R. Romero, “Optimal conductor size selection and reconductoring in radial distribution systems using a mixed-integer LP approach,” IEEE Transactions on Power Systems, vol. 28, no. 1, pp. 10–20, 2013, doi: 10.1109/TPWRS.2012.2201263.
R. Fourer, D. Gay, and B. Kernighan, AMPL: A Modeling Language for Mathematical Programming, vol. 36. 2002. doi: 10.1287/mnsc.36.5.519.
IBM ILOG CPLEX Optimization Studio, “V20. 1: User’s Manual for CPLEX,” IBM Corp, 2020.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2023 Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.