Algoritmo heurístico para ubicación óptima de uPMUs considerando la mejora de la confiabilidad del sistema de distribución
Heuristic algorithm for optimal placement of uPMUs to improve distribution system reliability
DOI:
https://doi.org/10.15446/sicel.v11.109891Palabras clave:
Estimación de estado, evaluación de confiabilidad, índices de confiabilidad, localización de fallas, sistemas de distribución activos, unidades de medición fasorial (es)Active distribution networks, fault location, phasor measurement units, reliability assessment, reliability indices, state estimation. (en)
Descargas
Este artículo presenta un algoritmo para localización de fallas basado en un método de estimaciones de estado, válido para sistemas de distribución activos de media tensión. El algoritmo utiliza las mediciones registradas por unos pocos dispositivos de medición sincrofasoriales uPMUs, junto con pseudomediciones, para localizar con éxito la línea con falla. Primero se presenta la formulación de general de las estimaciones de estado bajo la suposición de que todas las barras son monitoreadas. Posteriormente, se define el método a seguir para conseguir detectar una falla con mínimo dos uPMUs. Finalmente, se desarrolla un algoritmo de localización óptima, cuyas restricciones se basan en mejorar los índices de confiabilidad del sistema. El método propuesto es validado en un sistema de distribución trifásico de 39 barras, donde el índice de confiabilidad de duración de interrupciones es reducido en un 22.01% con el despliegue de tan sólo dos uPMUs.
This paper presents a fault location algorithm based on a state estimation method, valid for medium voltage active distribution systems. The algorithm uses the measurements recorded by a few synchrophasor measurement devices uPMUs, along with pseudo measurements, to successfully locate the faulted line. First, the general formulation of the state estimation is presented under the assumption that all the buses are monitored. Then, the method to be followed to detect a fault with at least two uPMUs is defined. Finally, an optimal location algorithm, whose restrictions are based on improving the reliability indexes of the system, is developed. The proposed method is validated in a 39-bar three-phase distribution system, where the outage duration reliability index is reduced by 22.01% with the deployment of only two uPMUs.
Referencias
M. R. Tur, “Reliability Assessment of Distribution Power System When Considering Energy Storage Configuration Technique,” IEEE Access, vol. 8, pp. 77962–77971, 2020, doi: 10.1109/ACCESS.2020.2990345.
T. Adefarati and R. C. Bansal, “Reliability assessment of distribution system with the integration of renewable distributed generation,” Appl Energy, vol. 185, pp. 158–171, Jan. 2017, doi: 10.1016/j.apenergy.2016.10.087.
A. A. Chowdhury and D. O. Koval, Power Distribution System Reliability. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. doi: 10.1002/9780470459355.
R. E. Brown, Electric Power Distribution Reliability. CRC Press, 2017. doi: 10.1201/9780849375682.
M. Hojabri, U. Dersch, A. Papaemmanouil, and P. Bosshart, “A Comprehensive Survey on Phasor Measurement Unit Applications in Distribution Systems,” Energies (Basel), vol. 12, no. 23, p. 4552, Nov. 2019, doi: 10.3390/en12234552.
E. Dusabimana and S.-G. Yoon, “A Survey on the Micro-Phasor Measurement Unit in Distribution Networks,” Electronics (Basel), vol. 9, no. 2, p. 305, Feb. 2020.
H. Falaghi, M.-R. Haghifam, and M. R. O. Tabrizi, “Fault indicators effects on distribution reliability indices,” in 18th International Conference and Exhibition on Electricity Distribution (CIRED 2005), IEE, 2005, pp. v1-18-v1-18. doi: 10.1049/cp:20050894.
P. M. Joshi and H. K. Verma, “Synchrophasor measurement applications and optimal PMU placement: A review,” Electric Power Systems Research, vol. 199, p. 107428, Oct. 2021, doi: 10.1016/j.epsr.2021.107428.
R. F. Buzo, H. M. Barradas, and F. B. Leao, “A New Method for Fault Location in Distribution Networks Based on Voltage Sag Measurements,” IEEE Transactions on Power Delivery, vol. 36, no. 2, pp. 651–662, Apr. 2021, doi: 10.1109/TPWRD.2020.2987892.
J. Ren, S. S. Venkata, and E. Sortomme, “An Accurate Synchrophasor Based Fault Location Method for Emerging Distribution Systems,” IEEE Transactions on Power Delivery, vol. 29, no. 1, pp. 297–298, Feb. 2014, doi: 10.1109/TPWRD.2013.2288006.
W. Li, D. Deka, M. Chertkov, and M. Wang, “Real-Time Faulted Line Localization and PMU Placement in Power Systems Through Convolutional Neural Networks,” IEEE Transactions on Power Systems, vol. 34, no. 6, pp. 4640–4651, Nov. 2019, doi: 10.1109/TPWRS.2019.2917794.
P. K. Ganivada and P. Jena, “A Fault Location Identification Technique for Active Distribution System,” IEEE Trans Industr Inform, vol. 18, no. 5, pp. 3000–3010, May 2022, doi: 10.1109/TII.2021.3103543.
M. Farajollahi, A. Shahsavari, E. M. Stewart, and H. Mohsenian-Rad, “Locating the Source of Events in Power Distribution Systems Using Micro-PMU Data,” IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 6343–6354, Nov. 2018, doi: 10.1109/TPWRS.2018.2832126.
M. Pignati, L. Zanni, P. Romano, R. Cherkaoui, and M. Paolone, “Fault Detection and Faulted Line Identification in Active Distribution Networks Using Synchrophasors-Based Real-Time State Estimation,” IEEE Transactions on Power Delivery, vol. 32, no. 1, pp. 381–392, Feb. 2017, doi: 10.1109/TPWRD.2016.2545923.
F. Conte, F. D’Agostino, B. Gabriele, G.-P. Schiapparelli, and F. Silvestro, “Fault Detection and Localization in Active Distribution Networks Using Optimally Placed Phasor Measurements Units,” IEEE Transactions on Power Systems, vol. 38, no. 1, pp. 714–727, Jan. 2023, doi: 10.1109/TPWRS.2022.3165685.
M. Vaiman et al., “Using Synchrophasors to Improve Bulk Power System Reliability in North America,” in 2018 IEEE Power & Energy Society General Meeting (PESGM), IEEE, Aug. 2018, pp. 1–5. doi: 10.1109/PESGM.2018.8586560.
A. Shahsavari et al., “Distribution Grid Reliability Versus Regulation Market Efficiency: An Analysis Based on Micro-PMU Data,” IEEE Trans Smart Grid, vol. 8, no. 6, pp. 2916–2925, Nov. 2017, doi: 10.1109/TSG.2017.2718560.
M. A. Mohamed, A. S. Al-Sumaiti, M. Krid, E. M. Awwad, and A. Kavousi-Fard, “A Reliability-Oriented Fuzzy Stochastic Framework in Automated Distribution Grids to Allocate $mu$ -PMUs,” IEEE Access, vol. 7, pp. 33393–33404, 2019, doi: 10.1109/ACCESS.2019.2902465.
J. Vasconcelos, “Alocação Otimizada de Dispositivos Indicadores de Falta em Linhas Aéreas de Distribuição utilizando Busca em Vizinhança Variável.”
W. F. Usida, D. V. Coury, R. A. Flauzino, and I. N. Silva, “Alocação eficiente de indicadores de faltas em um sistema de distribuição real usando computação evolutiva,” Sba: Controle & Automação Sociedade Brasileira de Automatica, vol. 23, no. 3, pp. 306–320, Jun. 2012, doi: 10.1590/S0103-17592012000300005.
R. Dashti and J. Sadeh, “Fault indicator allocation in power distribution network for improving reliability and fault section estimation,” in 2011 International Conference on Advanced Power System Automation and Protection, IEEE, Oct. 2011, pp. 1406–1411. doi: 10.1109/APAP.2011.6180595.
A. Jahedi, J. Javidan, and H. Nasiraghdam, “Multi-Objective Modeling for Fault Indicators Placement Using Of NSGA II To Reduce Off Time And Costs In Distribution Network,” IJTPE, vol. 6, pp. 106–111, Dec. 2014.
H. O. Cruz and F. Bertequini Leao, “Optimal placement of fault indicators using adaptive genetic algorithm,” in 2017 IEEE Power & Energy Society General Meeting, IEEE, Jul. 2017, pp. 1–5. doi: 10.1109/PESGM.2017.8273897.
M. Farajollahi, M. Fotuhi-Firuzabad, and A. Safdarian, “Deployment of Fault Indicator in Distribution Networks: A MIP-Based Approach,” IEEE Trans Smart Grid, vol. 9, no. 3, pp. 2259–2267, 2018, doi: 10.1109/TSG.2016.2609680.
S. Tenesaca, P. Agudo, S. Zambrano-Asanza, B. Jaramillo León, J. Leite, and J. Franco, “Construção de modelos de redes de distribuição a partir de sistemas de informação geográfica utilizando grafos,” Jun. 2022, doi: https://doi.org/10.20906/sbse.v2i1.3102.
J. B. Leite and J. R. S. Mantovani, “Distribution System State Estimation Using the Hamiltonian Cycle Theory,” IEEE Trans Smart Grid, vol. 7, no. 1, pp. 366–375, Jan. 2016, doi: 10.1109/TSG.2015.2448940.
J. N. Nweke, A. G. Gusau, and L. M. Isah, “Reliability and protection in distribution power system considering customer-based indices,” Nigerian Journal of Technology, vol. 39, no. 4, pp. 1198–1205, Mar. 2021, doi: 10.4314/njt.v39i4.28.
O. Shavuka, K. O. Awodele, S. P. Chowdhury, and S. Chowdhury, “Reliability analysis of distribution networks,” in 2010 International Conference on Power System Technology, IEEE, Oct. 2010, pp. 1–6. doi: 10.1109/POWERCON.2010.5666066.
C. Reiz and J. B. Leite, “Optimal coordination of protection devices in distribution networks with distributed energy resources and microgrids,” IEEE Access, vol. 10, pp. 99584–99594, 2022, doi: 10.1109/ACCESS.2022.3203713.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2023 Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.