Publicado

2013-01-01

Hybrid Genetic Algorithm for the Optimal Location of Distributed Generation in Distribution Systems

Palabras clave:


Distributed generation, genetic algorithms, artificial neural networks, neighborhood search (es)

Descargas

Autores/as

  • Jesus Maria Lopez Lezama Universidad de Antioquia
  • Pablo Narvaez Interconexión Eléctrica SA (ISA)
  • Esteban Velilla Hernandez Universidad de Antioquia
This paper presents a novel approach based on a genetic algorithm combined with an artificial neural network and a reduced variable neighborhood search to find the optimal location of distributed generation in electric distribution systems. The objective function consists in minimizing active power losses. The main contribution of the paper consists in the combination of metaheuristic techniques along with artificial intelligence to solve a multi-modal non-convex problem. The use of an artificial neural network avoids the calculation of power flows, while the neighborhood search, applied at the end of each iteration, allows the algorithm to explore a wider search space and eventually, escape from local optimal solutions.

Cómo citar

APA

Lopez Lezama, J. M., Narvaez, P. y Velilla Hernandez, E. (2013). Hybrid Genetic Algorithm for the Optimal Location of Distributed Generation in Distribution Systems. Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL, 7. https://revistas.unal.edu.co/index.php/SICEL/article/view/38573

ACM

[1]
Lopez Lezama, J.M., Narvaez, P. y Velilla Hernandez, E. 2013. Hybrid Genetic Algorithm for the Optimal Location of Distributed Generation in Distribution Systems. Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL. 7, (ene. 2013).

ACS

(1)
Lopez Lezama, J. M.; Narvaez, P.; Velilla Hernandez, E. Hybrid Genetic Algorithm for the Optimal Location of Distributed Generation in Distribution Systems. SICEL 2013, 7.

ABNT

LOPEZ LEZAMA, J. M.; NARVAEZ, P.; VELILLA HERNANDEZ, E. Hybrid Genetic Algorithm for the Optimal Location of Distributed Generation in Distribution Systems. Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL, [S. l.], v. 7, 2013. Disponível em: https://revistas.unal.edu.co/index.php/SICEL/article/view/38573. Acesso em: 16 feb. 2025.

Chicago

Lopez Lezama, Jesus Maria, Pablo Narvaez, y Esteban Velilla Hernandez. 2013. «Hybrid Genetic Algorithm for the Optimal Location of Distributed Generation in Distribution Systems». Simposio Internacional Sobre La Calidad De La Energía Eléctrica - SICEL 7 (enero). https://revistas.unal.edu.co/index.php/SICEL/article/view/38573.

Harvard

Lopez Lezama, J. M., Narvaez, P. y Velilla Hernandez, E. (2013) «Hybrid Genetic Algorithm for the Optimal Location of Distributed Generation in Distribution Systems», Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL, 7. Disponible en: https://revistas.unal.edu.co/index.php/SICEL/article/view/38573 (Accedido: 16 febrero 2025).

IEEE

[1]
J. M. Lopez Lezama, P. Narvaez, y E. Velilla Hernandez, «Hybrid Genetic Algorithm for the Optimal Location of Distributed Generation in Distribution Systems», SICEL, vol. 7, ene. 2013.

MLA

Lopez Lezama, J. M., P. Narvaez, y E. Velilla Hernandez. «Hybrid Genetic Algorithm for the Optimal Location of Distributed Generation in Distribution Systems». Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL, vol. 7, enero de 2013, https://revistas.unal.edu.co/index.php/SICEL/article/view/38573.

Turabian

Lopez Lezama, Jesus Maria, Pablo Narvaez, y Esteban Velilla Hernandez. «Hybrid Genetic Algorithm for the Optimal Location of Distributed Generation in Distribution Systems». Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL 7 (enero 1, 2013). Accedido febrero 16, 2025. https://revistas.unal.edu.co/index.php/SICEL/article/view/38573.

Vancouver

1.
Lopez Lezama JM, Narvaez P, Velilla Hernandez E. Hybrid Genetic Algorithm for the Optimal Location of Distributed Generation in Distribution Systems. SICEL [Internet]. 1 de enero de 2013 [citado 16 de febrero de 2025];7. Disponible en: https://revistas.unal.edu.co/index.php/SICEL/article/view/38573

Descargar cita

Visitas a la página del resumen del artículo

165

Descargas

Los datos de descargas todavía no están disponibles.