Inverter-Based Generation EMT Model for Protection and Short Term Stability Studies based on Voltage Controlled Current Source
Palabras clave:
Short-Circuit Calculation, Inverter EMT Modelling, Inverter Based Generation (IBG), Controlled Current Source Model, IBG Grid Side Control (en)Descargas
This paper presents the integration of a generic inverter-based generation model for EMT studies using a voltage controlled current source that includes all the modules for proper protection and voltage stability analysis in power systems. This model allows utilities to face the challenge of performing accurate protection and voltage stability analysis with the large amounts of renewable resources connected to their energy matrices. The new dynamics of inverter-based generation and the lack of accurate models jeopardize the power systems’ security. Since most of the models are black boxes from manufacturers for EMT studies, this work proposes a generic model that may be adjusted for different conditions, allowing them to represent different kinds of control structures. The model is implemented in EMTP/ATP with a methodology for fast initialization showing accurate results for different control conditions.
The full text can be consulted at: https://doi.org/10.22430/22565337.2347
Referencias
Fay, M., Hallegatte, S., Vogt-Schilb, A., Rozenberg, J., Narloch, U., Washington, T. K. (n.d.). Decarbonizing Development: Planning ahead for a Future with Zero Emissions. https://doi.org/10.1080/14693062.2014.953908
Fernandez-Guillam ́ on, A., G ́ omez-L ́ azaro, E., Muljadi, E., Molina- ́ Garc ́ıa, A. (2019). Power systems with high renewable energy sources: ́ A review of inertia and frequency control strategies over time. In Renewable and Sustainable Energy Reviews (Vol. 115). Elsevier Ltd. https://doi.org/10.1016/j.rser.2019.109369
System Protection Guidelines for Systems with Inverter Based Re- sources: Performance of Line Current Differential, Phase Comparison, Negative Sequence, Communication-Assisted, and Frequency Protection Schemes Under Inverter-Based Resources and Impact of German Grid Code. EPRI, Palo Alto, CA: 2019. 3002016196.
Farantatos, E., Karaagac, U., Saad, H., Mahseredjian, J. (2013). Short-circuit current contribution of converter interfaced wind turbines and the impact on system protection. Proceedings of IREP Sympo- sium: Bulk Power System Dynamics and Control - IX Optimiza- tion, Security and Control of the Emerging Power Grid, IREP 2013. https://doi.org/10.1109/IREP.2013.6629360.
Neumann, T., Erlich, I. (2012). Short circuit current contribution of a photovoltaic power plant. IFAC Proceedings Volumes (IFAC- PapersOnline), 8(PART 1), 343–348. https://doi.org/10.3182/20120902- 4-FR-2032.00061.
Kim, I. (2019). Short-Circuit Analysis Models for Unbalanced Inverter-Based Distributed Generation Sources and Loads. IEEE Transactions on Power Systems, 34(5), 3515–3526. https://doi.org/10.1109/TPWRS.2019.2903552.
Jia, J., Yang, G., Nielsen, A. H. (2018). A Review on Grid-Connected Converter Control for Short-Circuit Power Provision under Grid Unbal- anced Faults. IEEE Transactions on Power Delivery, 33(2), 649–661. https://doi.org/10.1109/TPWRD.2017.2682164.
Telukunta, V., Pradhan, J., Agrawal, A., Singh, M., Srivani, S. G. (2017). Protection challenges under bulk penetration of renewable energy resources in power systems: A review. CSEE Journal of Power and Energy Systems, 3(4), 365–379. https://doi.org/10.17775/CSEEJPES.2017.00030.
Haddadi, A., Kocar, I., Farantatos, E. (2019). Impact of Inverter- Based Resources on Protection Schemes Based on Negative Sequence Components (Issue July).
Mohseni, M., Islam, S. M. (2012). Review of international grid codes for wind power integration: Diversity, technology and a case for global stan- dard. Renewable and Sustainable Energy Reviews, 16(6), 3876–3890. https://doi.org/10.1016/j.rser.2012.03.039.
IEEE PES. (2020). Modification of Commercial Fault Calculation Pro- grams for Wind Turbine Generators (Issue June).
Karaagac, U., Mahseredjian, J., Gagnon, R., Gras, H., Saad, H., Cai, L., Kocar, I., Haddadi, A., Farantatos, E., Bu, S., Chan, K. W., Wang, L. (2019). A Generic EMT-Type Model for Wind Parks With Permanent Magnet Synchronous Generator Full Size Converter Wind Turbines. IEEE Power and Energy Technology Systems Journal, 6(3), 131–141. https://doi.org/10.1109/jpets.2019.2928013.
Pahalawaththa, N., Achilles, S., Elkington, K., Vujatovic, D., Isaacs, A., Annakkage, U., Davies, M., Badrzadeh, B., Smith, C. (2016). Connection of Wind Farms To Weak AC Networks (Issue December). CIGRE.
Pourbeik, P., Sanchez-Gasca, J. J., Senthil, J., Weber, J. D., Zadehkhost, P. S., Kazachkov, Y., Tacke, S., Wen, J., Ellis, A. (2017). Generic Dynamic Models for Modeling Wind Power Plants and Other Renewable Technologies in Large-Scale Power System Studies. IEEE Transactions on Energy Conversion, 32(3), 1108–1116. https://doi.org/10.1109/TEC.2016.2639050.
Yamashita, K., Martinez Villanueva, S., Van Cutsem, T., Irwin, G., Carvalho Martins, J., Song, Z., Zhu, L., Renner, H., Aristidou, P., Green, I., Lammert, G., Ospina Pabon, L. ., Vennemann, K. (2018). Modelling of Inverter- Based Generation for Power System Dynamic Studies (Issue May).
M. Liserre, Teodorescu, P. R. R. (2011). Grid Converters for Photovoltaic and Wind Power Systems. Wiley.
Jia, J., Yang, G., Nielsen, A. H., Rønne-Hansen, P. (2019). Impact of VSC Control Strategies and Incorporation of Syn- chronous Condensers on Distance Protection Under Unbalanced Faults. IEEE Transactions on Industrial Electronics, 66(2), 1108–1118. https://doi.org/10.1109/TIE.2018.2835389.
Jia, J., Yang, G., Nielsen, A. H., Roenne-Hansen, P. (2018). Hardware- in-the-loop tests on distance protection considering VSC fault-ride- through control strategies. The Journal of Engineering, 2018(15), 824–829. https://doi.org/10.1049/joe.2018.0248.
Borrell, A., Miret, J., de Vicuna, L. G., Camacho, A., Castilla, M. (2014). Active and Reactive Power Strategies With Peak Current Lim- itation for Distributed Generation Inverters During Unbalanced Grid Faults. IEEE Transactions on Industrial Electronics, 62(3), 1515–1525. https://doi.org/10.1109/tie.2014.2347266.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2023 Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.