Branch Optimal Power Flow Model for DC Networks with Radial Structure: a Conic Relaxation
Palabras clave:
Convex reformulation, direct current networks, nonlinear optimization, numerical example, second-order cone programming (en)Descargas
In this paper, the problem of the optimal power flow analysis in radial direct current (DC) distribution networks is addressed, from the point of view of convex optimization. An alternative option of optimal power flow formulation that uses power and current flows through all the lines combined with nodal voltages is presented, instead of the classical nodal formulation. The proposed convex relaxation allows to rewrite the power flow at each line, i.e., pjk = vj ijk as a second-order cone equivalent using its hyperbolic representation. The resulting second-order cone programming (SOCP) model is easily solvable via interior point methods and guarantees the optimum global solution due to the convexity properties of the solution space. Numerical comparisons with classical metaheuristics such as ge- netic algorithm, vortex search algorithm, black hole optimization, sine cosine algorithm, and interior-point methods available in GAMS software demonstrate the global optimization capabilities of the proposed SOCP branch optimal power flow model. All the simulations are carried out in MATLAB 2017a using the CVX tool and the MOSEK solver.
The full text can be consulted at: https://doi.org/10.14483/22487638.18635
Referencias
M. Starke, L. M. Tolbert, and B. Ozpineci, “AC vs. DC distribution: A loss comparison,” in 2008 IEEE/PES Transmission and Distribution Conference and Exposition, 2008, pp. 1–7.
H. Gelani, F. Dastgeer, K. Siraj, M. Nasir, K. Niazi, and Y. Yang, “Efficiency Comparison of AC and DC Distribution Networks for Modern Residential Localities,” Applied Sciences, vol. 9, no. 3, p. 582, feb 2019.
O. D. Montoya, F. M. Serra, and C. H. D. Angelo, “On the Efficiency in Electrical Networks with AC and DC Operation Technologies: A Comparative Study at the Distribution Stage,” Electronics, vol. 9, no. 9, p. 1352, aug 2020.
H. Lotfi and A. Khodaei, “AC Versus DC Microgrid Planning,” IEEE Trans. Smart Grid, vol. 8, no. 1, pp. 296–304, jan 2017.
A. Garces, “On the Convergence of Newtons Method in Power Flow Studies for DC Microgrids,” IEEE Transactions on Power Systems, vol. 33, no. 5, pp. 5770–5777, sep 2018.
S. Parhizi, H. Lotfi, A. Khodaei, and S. Bahramirad, “State of the Art in Research on Microgrids: A Review,” IEEE Access, vol. 3, pp. 890–925, 2015.
J. W. Simpson-Porco, F. Dorfler, and F. Bullo, “On Resistive Networks of Constant-Power Devices,” IEEE Trans. Circuits Syst. II, vol. 62, no. 8, pp. 811–815, aug 2015.
A. Garces, “Uniqueness of the power flow solutions in low voltage direct current grids,” Electr. Power Syst. Res., vol. 151, pp. 149–153, oct 2017.
J. Li, F. Liu, Z. Wang, S. H. Low, and S. Mei, “Optimal Power Flow in Stand-Alone DC Microgrids,” IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5496–5506, sep 2018.
S. Bahrami, F. Therrien, V. W. Wong, and J. Jatskevich, “Semidefinite Relaxation of Optimal Power Flow for AC-DC Grids,” IEEE Trans. Power Syst., vol. 32, no. 1, pp. 289–304, jan 2017.
O. D. Montoya and W. Gil-Gonzalez, “A MIQP model for optimal ´location and sizing of dispatchable DGs in DC networks,” Energy Syst., aug 2020.
L. F. Grisales-Norena, O. D. Garzon-Rivera, O. D. Montoya, and C. A. ˜Ramos-Paja, “Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks,” in Communications in Computer and Information Science. Springer International Publishing, 2019, pp. 214–225.
M. Farivar and S. H. Low, “Branch flow model: Relaxations and convexification,” in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC). IEEE, dec 2012.
O. D. Montoya, W. Gil-Gonzalez, and A. Garces, “Power flow approximation for DC networks with constant power loads via logarithmic transform of voltage magnitudes,” Electr. Power Syst. Res., vol. 175, p. 105887, oct 2019.
O. S. Velasquez, O. D. Montoya, V. M. Garrido, and L. F. Grisales-Noreña, “Optimal Power Flow in Direct-Current Power Grids via Black Hole Optimization,” Advances in Electrical and Electronic Engineering, vol. 17, no. 1, mar 2019.
O. D. Montoya, W. Gil-Gonzalez, and M. Holguín, "´Optimal power flow studies in direct current grids: An application of the bio-inspired elephant swarm water search algorithm,” J. Phys. Conf. Ser., vol. 1403, p. 012010, nov 2019.
J. A. Giraldo, O. D. Montoya, L. F. Grisales-Norena, W. Gil-González and M. Holgu´ın, “Optimal power flow solution in direct current grids using Sine-Cosine algorithm,” J. Phys. Conf. Ser., vol. 1403, p. 012009, nov 2019.
O. D. Montoya, W. Gil-Gonzalez, and L. F. Grisales-Norena, “Vortex Search Algorithm for Optimal Power Flow Analysis in DC Resistive Networks With CPLs,” IEEE Trans. Circuits Syst. II, vol. 67, no. 8, pp. 1439–1443, aug 2020.
H. Gupta, A. Gupta, S. K. Gupta, P. Nayak, and T. Shrivastava, “How effective is Black Hole Algorithm?” in 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I). IEEE, dec 2016.
H. Y. Benson and Umit Sa ¨ glam, “Mixed-Integer Second-Order Cone Programming: A Survey,” in Theory Driven by Influential Applications. INFORMS, sep 2013, pp. 13–36.
S. Kaur, G. Kumbhar, and J. Sharma, “A MINLP technique for optimal placement of multiple DG units in distribution systems,” Int. J. Electr. Power Energy Syst., vol. 63, pp. 609–617, dec 2014
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2023 Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.