Publicado

2021-10-15

Comparison between Electrogeometric Model and Leader Progression Model for Transmission Lines Shielding Failure Rate

Palabras clave:

SFR, SFFOR, LPM, EGM (en)

Descargas

Autores/as

  • Johny Hernán Montaña Chaparro Universidad del Norte
  • Sergio Zumaran Rivera Department of Electrical Engineering UTFSM
  • Roger Schurch Brandt Department of Electrical Engineering UTFSM

This paper presents a proposed model to estimate the shielding failure rate based on a variation of Leader Progression Model (LPM) with stochastic characteristics, having less computational time to describe the downward leader into the lightning phenomenon. The integral model of the discharge
channel is used to estimate the shielding failure rate and its results are compared to classic electrogeometric model in an overhead transmission line of 220 [kV]. The transmission line is located in the north of Chile in the mountain region where an important lightning activity takes place. The values of Shielding Failure Rate (SFR) and the Shielding Failure Flashover Rate (SFFOR) were computed for both models to make the comparison. The values from LPM are higher, which can be explained because the LPM considers the tortuosity and ramification of the lightning channel.

Referencias

M.Vargas Nuevo modelo integral del canal de la descarga electrica ́ atmosferica y su enlace con estructuras en tierra. Tesis de doctorado, ́ Universidad Nacional de Colombia, Bogota, Colombia 2006. ́

IEEE 1410, IEEE guide for improving the lightning performance of electric power overhead distribution lines, vol. 2010, no. January. 2011.

M. R. B. Tavakoli and B. Vahidi, Transmission-lines shielding failure- rate calculation by means of 3-D leader progression models IEEE Trans. Power Deliv., vol. 26, no. 2, pp. 507–516, 2011, doi: 10.1109/TP- WRD.2010.2042183.

Q. Yang, J. Tao, and W. Sima, “Analysis of shielding failure in transmis- sion lines considering complex terrain,” 2017 Int. Symp. Light.

J. He, Y. Tu, R. Zeng, J. B. Lee, S. H. Chang, and Z. Guan, “Numeral analysis model for shielding failure of transmission line under lightning stroke,” IEEE Trans. Power Deliv., vol. 20, no. 2 I, pp. 815–822, Apr. 2005, doi: 10.1109/TPWRD.2004.839189.

I. Sarajcev, P. Saraj ˇ cev, and S. Vujevi ˇ c, “Mathematical model of lightning ́ stroke development,” in SoftCom 2008: 16th International Conference on Software, Telecommuncations and Computer Networks, 2008.

C. Zhuang, R. Zeng, Q. Li, H. Liu, Z. Yu, and J. He, “Improve the electrogeometric model by the analysis results of leader propagation model for transmission lines,” in 2014 International Conference on Lightning Protection, ICLP 2014.

V. Jimenez, “Desempeno de l ̃ ́ıneas aereas de transmisi ́ on frente a descar- ́ gas electricas atmosf ́ ericas: An ́ alisis de la falla de apantallamiento en ́ terrenos con topograf ́ıa agreste”, Tesis de Maestr ́ıa, Universidad del Norte, Barranquilla, Colombia, 2013.

Gonen Turan “Electric Power Transmission System Engineering Analysis and Design.”

Endesa, ”Redes de energ ́ıa electrica-L ́ ́ıneas de transmision” 1982. ́

D. Committee, IEEE guide for Improving the lightning performance of Transmission Lines. 1997.

CIGRE WG01 SC33, “Guide to procedures for estimating the lightning performance of transmission lines,” CIGRE Rep. 63, vol. 01, no. October, p. 64, 1991.

B. Vahidi, M. Yahyaabadi, M. R. B. Tavakoli, and S. M. Ahadi, Leader progression analysis model for shielding failure computation by using the charge simulation method IEEE Trans. Power Deliv., vol. 23, no. 4, pp. 2201–2206, 2008.

F. Rizk. Switehing impulse strength of air insulation: Leader inception criterion.IEEE Power Engineering Review, 9:60–61, 1989.

F. Rizk.Modeling of transmission line exposure to direct lightning strokes. Transactions on power delivery. 1990.

Esinel-Ingenieros, ”Memoria de calculo parametros el ́ ectricos l ́ ́ıneas de alta tension”, 2013. ́

J. Montana and J. Silva. Estimation of the lightning parameters in the North Regionof Colombia: Results of a study based on linet information ́ system and using statisticsmodels.2013 Int. Symp. Light. Prot. SIPDA 2013, pages 11–16, 2013.

V. Rakov, M. Uman, and Y. Raizer. Lightning: Physics and ef- fects.Physics Today- PHYS TODAY, 57:63–64, 01 2004.

Cómo citar

APA

Montaña Chaparro, J. H., Zumaran Rivera, S. . y Schurch Brandt, R. . (2023). Comparison between Electrogeometric Model and Leader Progression Model for Transmission Lines Shielding Failure Rate. Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL, 10. https://revistas.unal.edu.co/index.php/SICEL/article/view/96763

ACM

[1]
Montaña Chaparro, J.H., Zumaran Rivera, S. y Schurch Brandt, R. 2023. Comparison between Electrogeometric Model and Leader Progression Model for Transmission Lines Shielding Failure Rate. Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL. 10, (mar. 2023).

ACS

(1)
Montaña Chaparro, J. H.; Zumaran Rivera, S. .; Schurch Brandt, R. . Comparison between Electrogeometric Model and Leader Progression Model for Transmission Lines Shielding Failure Rate. SICEL 2023, 10.

ABNT

MONTAÑA CHAPARRO, J. H.; ZUMARAN RIVERA, S. .; SCHURCH BRANDT, R. . Comparison between Electrogeometric Model and Leader Progression Model for Transmission Lines Shielding Failure Rate. Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL, [S. l.], v. 10, 2023. Disponível em: https://revistas.unal.edu.co/index.php/SICEL/article/view/96763. Acesso em: 16 feb. 2025.

Chicago

Montaña Chaparro, Johny Hernán, Sergio Zumaran Rivera, y Roger Schurch Brandt. 2023. «Comparison between Electrogeometric Model and Leader Progression Model for Transmission Lines Shielding Failure Rate». Simposio Internacional Sobre La Calidad De La Energía Eléctrica - SICEL 10 (marzo). https://revistas.unal.edu.co/index.php/SICEL/article/view/96763.

Harvard

Montaña Chaparro, J. H., Zumaran Rivera, S. . y Schurch Brandt, R. . (2023) «Comparison between Electrogeometric Model and Leader Progression Model for Transmission Lines Shielding Failure Rate», Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL, 10. Disponible en: https://revistas.unal.edu.co/index.php/SICEL/article/view/96763 (Accedido: 16 febrero 2025).

IEEE

[1]
J. H. Montaña Chaparro, S. . Zumaran Rivera, y R. . Schurch Brandt, «Comparison between Electrogeometric Model and Leader Progression Model for Transmission Lines Shielding Failure Rate», SICEL, vol. 10, mar. 2023.

MLA

Montaña Chaparro, J. H., S. . Zumaran Rivera, y R. . Schurch Brandt. «Comparison between Electrogeometric Model and Leader Progression Model for Transmission Lines Shielding Failure Rate». Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL, vol. 10, marzo de 2023, https://revistas.unal.edu.co/index.php/SICEL/article/view/96763.

Turabian

Montaña Chaparro, Johny Hernán, Sergio Zumaran Rivera, y Roger Schurch Brandt. «Comparison between Electrogeometric Model and Leader Progression Model for Transmission Lines Shielding Failure Rate». Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL 10 (marzo 21, 2023). Accedido febrero 16, 2025. https://revistas.unal.edu.co/index.php/SICEL/article/view/96763.

Vancouver

1.
Montaña Chaparro JH, Zumaran Rivera S, Schurch Brandt R. Comparison between Electrogeometric Model and Leader Progression Model for Transmission Lines Shielding Failure Rate. SICEL [Internet]. 21 de marzo de 2023 [citado 16 de febrero de 2025];10. Disponible en: https://revistas.unal.edu.co/index.php/SICEL/article/view/96763

Descargar cita

Visitas a la página del resumen del artículo

52

Descargas

Los datos de descargas todavía no están disponibles.