Identification of areas and elevated structures with the greatest amount of lightning impacts (Hotspots)
Palabras clave:
Lightning impacts, strokes, Ground Flash Density (GFD), keraunic level (NK), elevated structures, hotspots, LINET network (en)Impactos de rayo, Descargas atmosféricas, Densidad de Descargas a Tierra (DDT), Nivel Ceráunico, Estructuras elevadas, Hotspots, Red LINET (es)
Descargas
This work presents a methodology to determine the sites with the greatest amount of lightning impacts or strokes (hotspots) in cities such as Medellín, Barranquilla, Barrancabermeja, and Pereira. Starting from the identification and location of the highest structures and possible event places, 600m polygons were located on their surface, in this way, using the information of lightning activity (cloud to ground CG strokes) provided by the Colombian Total Lightning Detection Network with LINET technology during the years 2016, 2017 and 2018, the number of impacts per polygon was determined, which allowed to identify the hotspots in each of the study areas. Among the obtained results, it was found that the places where the elevated structures are located do not always correspond to the sites with the highest incidence of lightning and that these are primarily found in forested areas.
An upgrade version of the full text can be consulted at: https://doi.org/10.22430/22565337.2376
Referencias
R. I. Albrecht, S. J. Goodman, D. E. Buechler, R. J. Blakeslee, and H. J. Christian, “Where are the lightning hotspots on earth?,” Bull. Am. Meteorol. Soc., vol. 97, no. 11, pp. 2051–2068, 2016, doi: 10.1175/BAMS-D-14-00193.1.
H. J. Christian et al., “Global frequency and distribution of lightning as observed from space by the Optical Transient Detector,” J. Geophys. Res. D Atmos., 2003, doi: 10.1029/2002jd002347.
J. Obbard, “Our Changing Planet: The View from Space,” J. Environ. Qual., 2009, doi: 10.2134/jeq2008.0020br.
D. J. Cecil, D. E. Buechler, and R. J. Blakeslee, “Gridded lightning climatology from TRMM-LIS and OTD: Dataset description,” Atmos. Res., 2014, doi: 10.1016/j.atmosres.2012.06.028.
T. Horacio, “El Rayo. Mitos, Leyendas, Ciencia y Tecnologia - Parte 2,” 1991.
D. Aranguren et al., “Colombian Total Lightning Detection Network and early detection of failure risks for power systems,” Simp. Int. sobre Calid. la Energía Eléctrica ( VII SICEL), pp. 1–6, 2013.
D. Fernando and D. R. Trujillo, “Evaluación del efecto urbano sobre los parámetros del rayo. Caso Colombiano,” p. 114, 2018, [Online]. Available: http://bdigital.unal.edu.co/63551/1/93061400.2018.pdf.
D. Aranguren, J. López, J. Inampués, H. Torres, and H. D. Betz, “Cloud-to-ground lightning activity in Colombia and the influence of topography,” 2014, doi: 10.1109/ICLP.2014.6973430.
Icontec. (2008b). NTC 4552-2. Protección contra descargas eléctricas atmosféricas. Parte 2: Manejo del riesgo. Colombia: Icontec.
C. A. Cruz Mosquera, “Evaluación del riesgo por rayos incluyendo un Sistema de Alarma de Tormentas (SAT) en Colombia,” p. 248, 2015, [Online]. Available: http://www.bdigital.unal.edu.co/52646/.
H. O. Benavides, “Información técnica sobre Gases de Efecto Invernadero y el cambio climático.,” Ideam, pp. 1–102, 2007, doi: IDEAM–METEO/008-2007.
GO Zapata, “¿Por qué caen cientos de rayos durante una hora en el Valle de Aburrá?,” Medellín, Colombia, p. 2, 2018.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2023 Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.