Prediction model of primary solar resource with the use of Machine Learning, current results and future challenges
Palabras clave:
Machine Learning, Predictive Model, ,Forecasting, Solar Radiation. (en)Descargas
The use of Machine Learning (ML) techniques in the quantification-prediction of variable primary resource presents an advantage over traditional deterministic methods, the data processing methodology is fundamental for the quantification-prediction of variable natural resources such as solar radiation and wind speed. Being a resource of variable nature changes with geography, leading to a change in the performance of solar photovoltaic (PV) systems. In Colombia there are five natural geographical regions: the plains, mountains, jungle and two coasts, so the climatic conditions in Colombia are variable, which directly impacts the primary solar resource. A Machine Learning model is proposed for the prediction of solar radiation with a daily forecast prediction that considers the geolocation and the relationships between the primary resource and the typical climate data of the cities that represent the varied climate of the country.
Referencias
IEA, “System integration of renewables,” 2021. https://www.iea.org/topics/system-integration-of-renewables.
IEA, “Covid-19 impact on electricity,” IEA, 2021. https://www.iea.org/reports/covid-19-impact-on-electricity.
A. Navon, R. Machlev, D. Carmon, A. E. Onile, J. Belikov, and Y. Levron, “Effects of the COVID-19 Pandemic on Energy Systems and Electric Power Grids—A Review of the Challenges Ahead,” Energies, vol. 14, no. 4, p. 1056, 2021, doi: 10.3390/en14041056.
H. Zhong, Z. Tan, Y. He, L. Xie, and C. Kang, “Implications of COVID-19 for the electricity industry: A comprehensive review,” CSEE J. Power Energy Syst., vol. 6, no. 3, pp. 489–495, 2020, doi: 10.17775/CSEEJPES.2020.02500.
P. Jiang, Y. Van Fan, and J. J. Klemeš, “Impacts of COVID-19 on energy demand and consumption: Challenges, lessons and emerging opportunities,” Appl. Energy, vol. 285, no. November 2020, 2021, doi: 10.1016/j.apenergy.2021.116441.
IEA, “Digitalisation and Energy,” 2017. https://www.iea.org/reports/digitalisation-and-energy.
M. de M. de Colombia, Integración de las energías renovables no convencionales en Colombia. Bogota Colombia.
UPME, “ELÉCTRICA Y POTENCIA Revisión Octubre de 2016,” p. 48, 2016, [Online]. Available: http://www1.upme.gov.co/DemandaEnergetica/UPME_Proyeccion_Demanda_Energia_Electrica_Octubre_2016_version2.0.pdf.
P. CORREDOR, “INTEGRACIÓN DE FUENTES DE ENERGÍA NO CONVENCIONALES RENOVABLES INTERMITENTES,” no. 10, 2014.
E. en M. XM and C. N. de D. CND, “PROPUESTA DE REQUERIMIENTOS TÉCNICOS PARA LA INTEGRACIÓN DE FUENTES DE GENERACIÓN NO SÍNCRONA AL SIN,” 2018, [Online]. Available: http://web.ing.puc.cl/power/alumno03/alternativa.htm#_Costos_de_la_tecnologia_eolica.
S. Few, P. Djapic, G. Strbac, J. Nelson, and C. Candelise, “Assessing local costs and impacts of distributed solar PV using high resolution data from across Great Britain,” Renew. Energy, vol. 162, pp. 1140–1150, 2020, doi: 10.1016/j.renene.2020.08.025.
M. Alanazi, M. Mahoor, and A. Khodaei, “Co-optimization generation and transmission planning for maximizing large-scale solar PV integration,” Int. J. Electr. Power Energy Syst., vol. 118, no. November 2019, 2020, doi: 10.1016/j.ijepes.2019.105723.
R. Sabzehgar, D. Z. Amirhosseini, and M. Rasouli, “Solar power forecast for a residential smart microgrid based on numerical weather predictions using artificial intelligence methods,” J. Build. Eng., vol. 32, no. August, p. 101629, 2020, doi: 10.1016/j.jobe.2020.101629.
C. L. Dewangan, S. N. Singh, and S. Chakrabarti, “Combining forecasts of day-ahead solar power,” Energy, vol. 202, p. 117743, 2020, doi: 10.1016/j.energy.2020.117743.
J. P. Lai, Y. M. Chang, C. H. Chen, and P. F. Pai, “A survey of machine learning models in renewable energy predictions,” Appl. Sci., vol. 10, no. 17, 2020, doi: 10.3390/app10175975.
F. R. Martins, E. B. Pereira, S. A. B. Silva, S. L. Abreu, and S. Colle, “Solar energy scenarios in Brazil, Part one: Resource assessment,” Energy Policy, vol. 36, no. 8, pp. 2843–2854, 2008, doi: 10.1016/j.enpol.2008.02.014.
T. V. Ramachandra, R. K. Jha, S. V. Krishna, and B. V. Shruthi, “Solar energy decision support system,” Int. J. Sustain. Energy, vol. 24, no. 4, pp. 207–224, 2005, doi: 10.1080/14786450500292105.
N. Case, “How To Become A Centaur,” pp. 17–18, 2018, doi: 10.1177/104747570201700511.
G. A. Tsihrintzis, M. Virvou, and L. C. Jain, “Deep Learning for Photovoltaic Power Plant Forecasting,” vol. 1, pp. 1–4, 2016, doi: 10.1007/978-3-662-49179-9_1.
B. Lantz, Machine Learning with R. 2017.
H. Wang et al., “Solar irradiance forecasting based on direct explainable neural network,” Energy Convers. Manag., vol. 226, no. April, p. 113487, 2020, doi: 10.1016/j.enconman.2020.113487.
M. Gan, Y. zhi Huang, M. Ding, X. ping Dong, and J. bei Peng, “Testing for nonlinearity in solar radiation time series by a fast surrogate data test method,” Sol. Energy, vol. 86, no. 9, pp. 2893–2896, 2012, doi: 10.1016/j.solener.2012.04.021.
J. A. Espinosa, S. Kaisler, F. Armour, and W. Money, “Big Data Redux: New Issues and Challenges Moving Forward,” Proc. 52nd Hawaii Int. Conf. Syst. Sci., vol. 1065, pp. 1065–1074, 2019, doi: 10.24251/hicss.2019.131.
X. Zheng, X. Zou, and H. Liu, “Electrical performance comparison of a rooftop photovoltaic system and an open-rack photovoltaic system,” Proc. 29th Chinese Control Decis. Conf. CCDC 2017, pp. 3258–3261, 2017, doi: 10.1109/CCDC.2017.7979068.
B. Dietrich, J. Walther, M. Weigold, and E. Abele, “Machine learning based very short term load forecasting of machine tools,” Appl. Energy, vol. 276, no. February, p. 115440, 2020, doi: 10.1016/j.apenergy.2020.115440.
L. Wang, O. Kisi, M. Zounemat-Kermani, G. A. Salazar, Z. Zhu, and W. Gong, “Solar radiation prediction using different techniques: Model evaluation and comparison,” Renew. Sustain. Energy Rev., vol. 61, pp. 384–397, 2016, doi: 10.1016/j.rser.2016.04.024.
A. Mellit, S. A. Kalogirou, L. Hontoria, and S. Shaari, “Artificial intelligence techniques for sizing photovoltaic systems: A review,” Renew. Sustain. Energy Rev., vol. 13, no. 2, pp. 406–419, 2009, doi: 10.1016/j.rser.2008.01.006.
S. a Kalogirou, “Artificial neural networks in renewable energy systems applications: a review,” Renew. Sustain. Energy Rev., vol. 5, no. 4, pp. 373–401, 2001, doi: 10.1016/S1364-0321(01)00006-5.
P. Lauret, C. Voyant, T. Soubdhan, M. David, and P. Poggi, “A benchmarking of machine learning techniques for solar radiation forecastingin an insular context,” Sol. Energy, vol. 112, p. 0, 2015, doi: http://dx.doi.org/10.1016/j.solener.2014.12.014.
C. Voyant et al., “Machine learning methods for solar radiation forecasting: A review,” Renewable Energy, vol. 105. Elsevier Ltd, pp. 569–582, 2017, doi: 10.1016/j.renene.2016.12.095.
H. M. Diagne, M. David, P. Lauret, J. Boland, N. Schmutz, and M. Diagne, “Review of solar irradiance forecasting methods and a proposition for small-scale insular grids Review of solar irradiance forecasting methods and a proposition for small-scale insular grids. Renewable and Sustainable Energy Reviews Review of solar irradia,” vol. 27, pp. 65–76, 2013, doi: 10.1016/j.rser.2013.06.042>.
K. Benmouiza and A. Cheknane, “Forecasting hourly global solar radiation using hybrid k -means and nonlinear autoregressive neural network models,” Energy Convers. Manag., vol. 75, pp. 561–569, 2013, doi: 10.1016/j.enconman.2013.07.003.
I. A. Ibrahim and T. Khatib, “A novel hybrid model for hourly global solar radiation prediction using random forests technique and firefly algorithm,” Energy Convers. Manag., vol. 138, pp. 413–425, 2017, doi: 10.1016/j.enconman.2017.02.006.
W. Ji and K. C. Chee, “Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN,” Sol. Energy, vol. 85, no. 5, pp. 808–817, 2011, doi: 10.1016/j.solener.2011.01.013.
P. W. Stackhouse et al., “POWER Release 8 ( with GIS Applications ) Methodology ( Data Parameters , Sources , & Validation ) Documentation Date ( All previous versions are obsolete ) ( Data Version 8 . 0 . 1 ),” vol. 8, 2018.
B. Sivaneasan, C. Y. Yu, and K. P. Goh, “Solar Forecasting using ANN with Fuzzy Logic Pre-processing,” Energy Procedia, vol. 143, pp. 727–732, 2017, doi: 10.1016/j.egypro.2017.12.753.
J. Heng, J. Wang, L. Xiao, and H. Lu, “Research and application of a combined model based on frequent pattern growth algorithm and multi-objective optimization for solar radiation forecasting,” Appl. Energy, vol. 208, no. September, pp. 845–866, 2017, doi: 10.1016/j.apenergy.2017.09.063.
A. Sözen, E. Arcaklioǧlu, M. Özalp, and N. Çaǧlar, “Forecasting based on neural network approach of solar potential in Turkey,” Renew. Energy, vol. 30, no. 7, pp. 1075–1090, 2005, doi: 10.1016/j.renene.2004.09.020.
S. Belaid and A. Mellit, “Prediction of daily and mean monthly global solar radiation using support vector machine in an arid climate,” Energy Convers. Manag., vol. 118, pp. 105–118, 2016, doi: 10.1016/j.enconman.2016.03.082.
J. Rayl, G. S. Young, and J. R. S. Brownson, “Irradiance co-spectrum analysis: Tools for decision support and technological planning,” Sol. Energy, vol. 95, pp. 364–375, 2013, doi: 10.1016/j.solener.2013.02.029.
C. Bergmeir and M. Ben, “frbs : Fuzzy Rule-Based Systems for Classification,” J. Stat. Softw., vol. 65, no. 6, pp. 1–30, 2015, doi: 10.18637/jss.v069.i12.
F. O. Hocaoǧlu, Ö. N. Gerek, and M. Kurban, “Hourly solar radiation forecasting using optimal coefficient 2-D linear filters and feed-forward neural networks,” Sol. Energy, vol. 82, no. 8, pp. 714–726, 2008, doi: 10.1016/j.solener.2008.02.003.
M. Ghayekhloo, M. Ghofrani, M. B. Menhaj, and R. Azimi, “A novel clustering approach for short-term solar radiation forecasting,” Sol. Energy, vol. 122, pp. 1371–1383, 2015, doi: 10.1016/j.solener.2015.10.053.
Xiyun Yang, Feifei Jiang, and Huan Liu, “Short-Term Solar Radiation Prediction based on SVM with Similar Data,” 2nd IET Renew. Power Gener. Conf. (RPG 2013), no. 2, pp. 1.11-1.11, 2013, doi: 10.1049/cp.2013.1735.
J. Boland, M. David, and P. Lauret, “Short term solar radiation forecasting: Island versus continental sites,” Energy, vol. 113, pp. 186–192, 2016, doi: 10.1016/j.energy.2016.06.139.
F. Díaz, G. Montero, J. M. Escobar, E. Rodríguez, and R. Montenegro, “A new predictive solar radiation numerical model,” Appl. Math. Comput., vol. 267, pp. 596–603, 2015, doi: 10.1016/j.amc.2015.01.036.
O. Garcia-Hinde et al., “Feature selection in solar radiation prediction using bootstrapped SVRs,” 2016 IEEE Congr. Evol. Comput. CEC 2016, pp. 3638–3645, 2016, doi: 10.1109/CEC.2016.7744250.
S. X. X. Chen, H. B. B. Gooi, and M. Q. Q. Wang, “Solar radiation forecast based on fuzzy logic and neural networks,” Renew. Energy, vol. 60, no. 0, pp. 195–201, 2013, doi: http://dx.doi.org/10.1016/j.renene.2013.05.011.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2023 Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.