Publicado
Bird Diversity Across an Andean City: The Limitation of Species Richness Values and Watershed Scales
Diversidad de aves en una ciudad andina: la limitación de los valores de riqueza de especies y la escala de cuenca
DOI:
https://doi.org/10.15446/abc.v28n3.101974Palabras clave:
Aburrá Valley, Neotropical city, Tropical Andes, urban biodiversity, urbanization (en)Andes Tropicales, biodiversidad urbana, ciudad Neotropical, urbanización, Valle de Aburrá (es)
homogeneização biótica, cidade Neotropical, Andes Tropicais, biodiversidade urbana, urbanização (pt)
Descargas
Archivos adicionales
Evaluating several biodiversity descriptors and considering several spatial scales might elucidate conservation issues and improve biodiversity monitoring in urban environments. We estimated species richness (order q = 0), Shannon diversity (order q = 1), and Simpson diversity (order q = 2) based on Hill numbers and performed cluster analysis and non-metric multidimensional scaling (NMDS) to compare seven urban micro-watersheds and a peri-urban site across a northern Andean city (Medellín, Colombia). We found 113 diurnal resident bird species: 50 (44 %) exclusively within urban sites, 21 (19 %) exclusively in the periurban site, and 42 (37 %) shared species. Some urban watersheds had similar bird species richness to the periurban site, but Shannon and Simpson diversities were always lower, showing decrease in local bird diversity when abundances were considered. Bird species composition differed between urban watersheds and the periurban site, with all urban watersheds grouped altogether by cluster and NMDS analysis, and the periurban site forming its own group. This suggests homogenization of bird species composition due to the species turnover decreasing across urban areas, with endemic, near endemic and rare species restricted to periurban areas where native forest remnants persist. Several scales of biodiversity and analysis at more local scales are needed to better understand biodiversity patterns across Andean cities and to design urban planning strategies that prevent biodiversity loss.
La evaluación de varios indicadores de biodiversidad y considerar varias escalas espaciales podría evidenciar problemas de conservación y mejorar el monitoreo de biodiversidad en ambientes urbanos. Estimamos la riqueza de especies (orden q = 0) y las diversidades de Shannon (orden q = 1) y Simpson (orden q = 2) usando números de Hill, y realizamos análisis de agrupamiento y escalamiento no métrico multidimensional (NMDS) para comparar siete microcuencas urbanas y un sitio periurbano en una ciudad del norte de los Andes (Medellín, Colombia). Encontramos 113 especies de aves residentes: 50 (44 %) exclusivamente dentro de la zona urbana, 21 (19 %) exclusivamente en el sitio periurbano y 42 (37 %) compartidas. Algunas cuencas urbanas tuvieron una riqueza de especies similar al sitio periurbano, pero las diversidades de Shannon y Simpson fueron siempre menores, mostrando patrones más claros de reducción de diversidad de aves al considerar las abundancias. La composición de especies de aves se diferenció entre zonas urbanas y el sitio periurbano, con las microcuencas urbanas agrupándose entre sí en los análisis de agrupamiento y NMDS. El sitio periurbano formó su propio grupo, sugiriendo homogenización en la composición de especies de aves debido a la reducción de recambio de especies dentro de la zona urbana, con las especies endémicas, casi endémicas y raras restringiéndose a zonas periurbanas donde persisten remanentes de bosque nativo. Indicadores que evalúen varias escalas de biodiversidad y análisis que consideren escalas espaciales más locales son necesarios para entender mejor los patrones de biodiversidad en ciudades andinas y diseñar estrategias de planificación urbana que prevengan la pérdida de biodiversidad.
Referencias
Anderson, C. B. (2018). Biodiversity monitoring, earth observations and the ecology of scale. Ecology Letters, 21(10), 1572–1585. https://doi.org/10.1111/ele.13106 DOI: https://doi.org/10.1111/ele.13106
Andrade, G. I., Remolina, F., & Wiesner, D. (2013). Assembling the pieces: a framework for the integration of multi-functional ecological main structure in the emerging urban region of Bogotá, Colombia. Urban Ecosystems, 16, 723–739. https://doi.org/10.1007/s11252-013-0292-5 DOI: https://doi.org/10.1007/s11252-013-0292-5
Aronson, M. F. J., La Sorte, F. A., Nilon, C. H., Katti, M., Goddard, M. A., Lepczyk, C. A., Warren, P. S., Williams, N. S. G., Cilliers, S., Clarkson, B., Dobbs, C., Dolan, R., Hedblom, M., Klotz, S., Kooijmans, J. L., Macgregorfors, I., McDonnell, M. J., Mörtberg, U., Pyšek, P., … Winter, M. (2014). A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proceedings of the Royal Society, 281, 1–8. https://doi.org/10.1098/rspb.2013.3330 DOI: https://doi.org/10.1098/rspb.2013.3330
Aronson, M. F. J., Lepczyk, C. A., Evans, K. L., Goddard, M. A., Lerman, S. B., MacIvor, J. S., Nilon, C. H., & Vargo, T.
(2017). Biodiversity in the city: key challenges for urban green space management. Frontiers in Ecology and the Environment, 15(4), 189–196. https://doi.org/10.1002/fee.1480 DOI: https://doi.org/10.1002/fee.1480
Becker, C. D., Loughin, T. M., & Santander, T. (2008). Identifying forest-obligate birds in tropical moist cloud forest of Andean Ecuador. Journal of Field Ornithology, 79(3), 229–244. https://doi.org/10.1111/j.1557-9263.2008.00184.x DOI: https://doi.org/10.1111/j.1557-9263.2008.00184.x
Becker, P. H. (2003). Biomonitoring with birds. In M. K. Rooks, S. Aramco, K. Snyder, L. Wilson, J. Fleming, & M. Wisnewski (Eds.), Bioindicators and biomonitors (1st ed., pp. 677–736). Elsevier Science Ltd. https://doi.org/10.1016/S0927-5215(03)80149-2 DOI: https://doi.org/10.1016/S0927-5215(03)80149-2
Bennie, J., Anderson, K., & Wetherelt, A. (2011). Measuring biodiversity across spatial scales in a raised bog using a novel paired-sample diversity index. Journal of Ecology, 99(2), 482–490. https://doi.org/10.1111/j.l365-2745.2010.01762.x DOI: https://doi.org/10.1111/j.1365-2745.2010.01762.x
Calcagno, V., & de Mazancourt, C. (2010). glmulti: An R package for easy automated model selection with (generalized) linear models. Journal of Statistical Software, 34(12), 1–29. https://doi.org/10.18637/jss.v034.i12 DOI: https://doi.org/10.18637/jss.v034.i12
Chace, J. F., & Walsh, J. J. (2006). Urban effects on native avifauna: A review. Land scape and Urban Planning, 74, 46–69. https://doi.org/10.1016/j.landurbplan.2004.08.007 DOI: https://doi.org/10.1016/j.landurbplan.2004.08.007
Chong, K. Y., Teo, S., Kurukulasuriya, B., Chung, Y. F., Rajathurai, S., Tiang, H., & Tan, W. (2014). Not all green is as good: Different effects of the natural and cultivated components of urban vegetation on bird and butterfly diversity. Biological Conservation, 171, 299–309. https://doi.org/10.1016/j.biocon.2014.01.037 DOI: https://doi.org/10.1016/j.biocon.2014.01.037
Cincotta, R. P., Wisnewski, J., & Engelman, R. (2000). Human population in the biodiversity hotspots. Nature, 404, 990–992. https://doi.org/10.1038/35010105 DOI: https://doi.org/10.1038/35010105
Clergeau, P., Croci, S., Jokimäki, J., Kaisanlahti-Jokimäki, M. L., & Dinetti, M. (2006). Avifauna homogenisation by urbanisation: Analysis at different European latitudes. Biological Conservation, 127(3), 336–344. https://doi.org/10.1016/j.biocon.2005.06.035 DOI: https://doi.org/10.1016/j.biocon.2005.06.035
Cornell Lab of Ornithology. (2023). eBird Basic Dataset. Ithaca, New York.
de Castro Pena, J. C., Martello, F., Ribeiro, M. C., Armitage, R. A., Young, R. J., & Rodrigues, M. (2017). Street trees reduce the negative effects of urbanization on birds. PLoS ONE, 12(3), 1–19. https://doi.org/10.1371/journal.pone.0174484 DOI: https://doi.org/10.1371/journal.pone.0174484
Departamento Nacional de Estadística (DANE). (2019). Resultados Censo Nacional de Población y Vivienda 2018 - Valle de Aburrá. https://www.dane.gov.co/files/censo2018/informacion-tecnica/cnpv-2018-presentacion-3ra-entrega.pdf
Ferenc, M., Sedláček, O., Fuchs, R., Dinetti, M., Fraissinet, M., & Storch, D. (2014). Are cities different? Patterns of species richness and beta diversity of urban bird communities and regional species assemblages in Europe. Global Ecology and Biogeography, 23(4), 479–489. https://doi.org/10.1111/geb.12130 DOI: https://doi.org/10.1111/geb.12130
Fox, J., & Weisberg, S. (2019). An R Companion to Applied Regression (Third edit). Sage Publications. https://socialsciences.mcmaster.ca/jfox/Books/Companion/
Garizábal-Carmona, J. A., & Mancera-Rodríguez, N. J. (2021). Bird species richness across a Northern Andean city: Effects of size, shape, land cover, and vegetation of urban green spaces. Urban Forestry & Urban Greening, 64(September), 127243. https://doi.org/10.1016/j.ufug.2021.127243 DOI: https://doi.org/10.1016/j.ufug.2021.127243
Hsieh, T. C., Ma, K. H., & Chao, A. (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7(12), 1451–1456. https://doi.org/10.1111/2041-210X.12613 DOI: https://doi.org/10.1111/2041-210X.12613
IDEAM. (2023). Cambio Climático. Ministerio de Medio Ambiente. http://www.ideam.gov.co/web/atencion-yparticipacion-ciudadana/cambio-climatico
Kolde, R. (2019). Package “pheatmap” (1.0.12). CRAN - Rproject. https://cran.r-project.org/web/packages/pheatmap/index.html
Legendre, P., & Legendre, L. (2012). Numerical Ecology (Third Ed). Elsevier B. V.
Leveau, L. M., Leveau, C. M., Villegas, M., Cursach, J. A., & Suazo, C. G. (2017). Bird Communities Along Urbanization Gradients: a Comparative Analysis Among Three Neotropical Cities. Ornitologia Neotropical, 28(June), 77–87. DOI: https://doi.org/10.58843/ornneo.v28i0.125
Leveau, L. M., Villaseñor, N. R., & Lambertucci, S. A. (2022). Ornitología urbana en el Neotrópico: estados de situación y desafíos. El Hornero, 37(2), 13–22. DOI: https://doi.org/10.56178/eh.v37i2.403
MacGregor-Fors, I., Gómez-Martínez, M. A., García-Arroyo, M., & Chávez-Zichinelli, C. A. (2020). A dead letter? Urban conservation, management, and planning strategies from the Mexican urban bird literature. Urban Ecosystems, 23(5), 1107–1115. https://doi.org/10.1007/s11252-020-00970-y DOI: https://doi.org/10.1007/s11252-020-00970-y
Mazaris, A. D. (2017). Open data and the future of conservation biology. Ethics in Science and Environmental Politics, 17, 29–35. DOI: https://doi.org/10.3354/esep00175
Mckinney, M. L. (2008). Effects of urbanization on species richness: A review of plants and animals. Urban Ecosystems, 11, 161–176. https://doi.org/10.1007/s11252-007-0045-4 DOI: https://doi.org/10.1007/s11252-007-0045-4
McKinney, M. L. (2006). Urbanization as a major cause of biotic homogenization. Biological Conservation, 127, 247–260. https://doi.org/10.1016/j.biocon.2005.09.005 DOI: https://doi.org/10.1016/j.biocon.2005.09.005
Morelli, F., Benedetti, Y., Ibáñez-Álamo, J. D., Jokimäki, J., Mänd, R., Tryjanowski, P., & Møller, A. P. (2016). Evidence of evolutionary homogenization of bird communities in urban environments across Europe. Global Ecology and Biogeography, 25, 1284–1293. https://doi.org/10.1111/geb.12486 DOI: https://doi.org/10.1111/geb.12486
Nielsen, A. B., van den Bosch, M., Maruthaveeran, S., & van den Bosch, C. K. (2013). Species richness in urban parks and its drivers: A review of empirical evidence. Urban Ecosystems, 17, 305–327. https://doi.org/10.1007/s11252-013-0316-1 DOI: https://doi.org/10.1007/s11252-013-0316-1
Oksanen, J., Guillaume, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H., Szoecs, E., & Wagner, H. (2019). Vegan: Community Ecology Package (2.5-5). CRAN - Rproject. https://cran.r-project.org/web/packages/vegan/vegan.pdf
Ortega-Álvarez, R., & Macgregor-Fors, I. (2011). Dusting-off the file: A review of knowledge on urban ornithology in Latin America. Landscape and Urban Planning, 101, 1–10. https://doi.org/10.1016/j.landurbplan.2010.12.020 DOI: https://doi.org/10.1016/j.landurbplan.2010.12.020
Ortega-Álvarez, R., & MacGregor-Fors, I. (2009). Living in the big city: Effects of urban land-use on bird community structure, diversity, and composition. Landscape and Urban Planning, 90(3–4), 189–195. https://doi.org/10.1016/j.landurbplan.2008.11.003 DOI: https://doi.org/10.1016/j.landurbplan.2008.11.003
Ouyang, J. Q., Isaksson, C., Schmidt, C., Hutton, P., Bonier, F., & Dominoni, D. (2018). A New Framework for Urban Ecology: An Integration of Proximate and Ultimate Responses to Anthropogenic Change. Integrative and Comparative Biology, 58(5), 915–928. https://doi.org/10.1093/icb/icy110 DOI: https://doi.org/10.1093/icb/icy110
Peterson, B. G., Carl, P., Boudt, K., Bennet, R., Ulrich, J., Zivot, E., Cornilly, D., Hung, E., Lestel, M., Balkissoon, K., Wertz, D., Alexander, A., Martin, R. D., Zhou, Z., & Shea, J. M. (2019). Package “PerformanceAnalytics” (1.5.3). CRAN - Rproject. https://cran.r-project.org/web/packages/PerformanceAnalytics/index.html
Pickett, S. T. A. (1989). Space-for-time substitution as an alternative to long-term studies. In G. E. Likens (Ed.), Long-Term Studies in Ecology: Approaches and Alternatives (pp. 110–135). Springer-Verlag New York Inc. https://doi.org/10.1007/978-1-4615-7358-6 DOI: https://doi.org/10.1007/978-1-4615-7358-6_5
Puppim de Oliveira, J. A., Balaban, O., Doll, C. N. H., Moreno-Peñaranda, R., Gasparatos, A., Iossifova, D., & Suwa, A. (2011). Cities and biodiversity: Perspectives and governance challenges for implementing the convention on biological diversity (CBD) at the city level. Biological Conservation, 144, 1302–1313. https://doi.org/10.1016/j.biocon.2010.12.007 DOI: https://doi.org/10.1016/j.biocon.2010.12.007
QGIS Development Team. (2023). QGIS Geographic Information System (Verona). Open Source Geospatial Foundation Project. http://qgis.osgeo.org
Quintero, E., Benavides, A. M., Moreno, N., & González-Caro, S. (2017). Bosques Andinos: Estado actual y retos para su conservación en Antioquia (Andean forests: conservation status and challenges in Antioquia) (E. Quintero Vallejo, A. M. Benavides, N. Moreno, & S. Gonzalez-Caro (eds.); 1ra ed.). Fundación Jardín Botánico de Medellín Joaquín Antonio Uribe- Programa Bosques Andinos (COSUDE). http://www.bosquesandinos.org/wp-content/uploads/2018/01/Libro_Bosques_Andinos_Interactivo.pdf
R Core Team. (2019). The R Stats Package (3.7.0). R Core Team. https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html
Rahbek, C., Borregaard, M. K., Colwell, R. K., Dalsgaard, B., Holt, B. G., Morueta-Holme, N., Nogues-Bravo, D., Whittaker, R. H., & Fjeldsa, J. (2019). Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science, 365(September), 1108–1113. https://doi.org/10.1126/science.aax0149 DOI: https://doi.org/10.1126/science.aax0149
Sax, D. F., & Gaines, S. D. (2003). Species diversity: From global decreases to local increases. Trends in Ecology and Evolution, 18(11), 561–566. https://doi.org/10.1016/S0169-5347(03)00224-6 DOI: https://doi.org/10.1016/S0169-5347(03)00224-6
Shochat, E., Warren, P. S., Faeth, S. H., McIntyre, N. E., & Hope, D. (2006). From patterns to emerging processes in mechanistic urban ecology. Trends in Ecology and Evolution, 21(4), 186–191. https://doi.org/10.1016/j.tree.2005.11.019 DOI: https://doi.org/10.1016/j.tree.2005.11.019
Shwartz, A., Muratet, A., Simon, L., & Julliard, R. (2013). Local and management variables outweigh landscape effects in enhancing the diversity of different taxa in a big metropolis. Biological Conservation, 157, 285–292. https://doi.org/10.1016/j.biocon.2012.09.009 DOI: https://doi.org/10.1016/j.biocon.2012.09.009
Shwartz, A., Shirley, S., & Kark, S. (2008). How do habitat variability and management regime shape the spatial heterogeneity of birds within a large Mediterranean urban park? Landscape and Urban Planning, 84(3–4), 219–229. https://doi.org/10.1016/j.landurbplan.2007.08.003 DOI: https://doi.org/10.1016/j.landurbplan.2007.08.003
Smith, M. R., Parker, M. J., Schaefer, J. A., Jokimäki, J., Jukka, S., Marja-Liisa, K. J., Vanegas-Guerrero, J., Fernández, C., Buitrago-González, W., Vargas-Salinas, F., Ryder, O. A., Thomas, S., Judson, J. M., Romanov, M. N., Dandekar, S., Papp, J. C., Sidak-loftis, L. C., Walker, K., Stalis, I. H., … Banfalvi, G. (2021). Quantifying biodiversity : procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4(2), 1–6. https://doi.org/10.1016/j.jnc.2019.125717 DOI: https://doi.org/10.1016/j.jnc.2019.125717
Sol, D., González-Lagos, C., Moreira, D., Maspons, J., & Lapiedra, O. (2014). Urbanisation tolerance and the loss of avian diversity. Ecology Letters, 17(8), 942–950. https://doi.org/10.1111/ele.12297 DOI: https://doi.org/10.1111/ele.12297
Sutherland, W. J., Newton, I., & Green, R. E. (2004). Bird Ecology and Conservation: A Handbook of Techniques. Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780198520863.001.0001
Threlfall, C. G., Mata, L., Mackie, J. A., Hahs, A. K., Stork, N. E., Williams, N. S. G., & Livesley, S. J. (2017). Increasing biodiversity in urban green spaces through simple vegetation interventions. Journal of Applied Ecology, 54(6), 1874–1883. https://doi.org/10.1111/1365-2664.12876 DOI: https://doi.org/10.1111/1365-2664.12876
Universidad Nacional de Colombia. (2005). Plan de ordenación y manejo de la cuenca del Río Aburrá (POMCA) (Territorial planning and management of the Aburrá River watershed). http://www.cornare.gov.co/documentos/POMCA_ABURRA.pdf
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Jaime A. Garizábal‐Carmona, Nestor Javier Mancera‐Rodríguez, Ian MacGregor‐Fors. (2025). Birds under pressure: associations of highly‐, moderately‐, and lowly‐abundant birds with landscape and local variables in a dense Neotropical city. Journal of Avian Biology, 2025(5) https://doi.org/10.1002/jav.03463.
2. Jaime A. Garizábal-Carmona, Jefry S. Betancur, Sergio Montoya-Arango, Laura Franco-Espinosa, N. Javier Mancera-Rodríguez. (2024). Categorizing urban avoiders, utilizers, and dwellers for identifying bird conservation priorities in a Northern Andean city. Frontiers in Ecology and Evolution, 12 https://doi.org/10.3389/fevo.2024.1432340.
3. Michael N. Romanov, Questan Ali Ameen, Ahmed Sami Shaker, Rana Mohammed Al-Obaidi, Darren K. Griffin. (2024). Conservation Genetics and Breeding using Molecular Genetic Markers in Japanese Quail (Coturnix japonica). Frontiers in Bioscience-Scholar, 16(4) https://doi.org/10.31083/j.fbs1604023.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. La aceptación de manuscritos por parte de la revista implicará, además de su edición electrónica de acceso abierto bajo licencia Attribution-NonCommercial-ShareAlike 4.0 (CC BY NC SA), la inclusión y difusión del texto completo a través del repositorio institucional de la Universidad Nacional de Colombia y en todas aquellas bases de datos especializadas que el editor considere adecuadas para su indización con miras a incrementar la visibilidad de la revista.
2. Acta Biológica Colombiana permite a los autores archivar, descargar y compartir, la versión final publicada, así como las versiones pre-print y post-print incluyendo un encabezado con la referencia bibliográfica del articulo publicado.
3. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
4. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos institucionales, en su página web o en redes sociales cientificas como Academia, Researchgate; Mendelay) lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).








