
Publicado
FOTOTAXIS DE Frankliniella occidentalis (THYSANOPTERA: THRIPIDAE) A DIODOS EMISORES DE LUZ EN COLOMBIA
Phototaxis of Frankliniella occidentalis (Thysanoptera: Thripidae) to light-emitting diodes in Colombia
DOI:
https://doi.org/10.15446/abc.v29n2.105850Palabras clave:
prueba de elección de colores, espectro de luz, thrips occidental de las flores, manejo integrado de plagas, manipulación óptica (es)colour choice-test, light spectrum, western flower thrips, integrated pest management, optical manipulation (en)
Descargas
Frankliniella occidentalis (Insecta: Thysanoptera) es una especie cosmopolita considerada plaga clave de cultivos ornamentales, hortícolas y frutales. Trampas de color con fuentes de luz artificial o proveniente del sol se utilizan para vigilar las poblaciones y manipular el comportamiento de los adultos como alternativa de control. En ensayos pareados con condiciones controladas, se evaluó la fototaxis de F. occidentalis a 21 combinaciones de longitudes de onda 397 nm (violeta), 462-463 nm (azul), 527-534 nm (verde), 589-595 nm (amarillo), 609 nm (naranja), 628 nm (rojo), y blanco (432-618 nm) utilizando diodos emisores de luz (LED) de bajo costo. Hembras de uno a dos días de emergencia y con cuatro a cinco horas de inanición, mostraron atracción y menor tiempo de respuesta a la combinación (violeta) y (amarillo) (FP= 14, FN= 1) con un tiempo de respuesta promedio de 2,763 ± 1,350 minutos (respuesta mínima a los 0,583 min y máxima de 4,417 minutos), comparado con combinaciones azul-verde, verde-violeta, amarillo-rojo, rojo-violeta. Los resultados contribuyen a procesos de estandarización para el diseño, implementación y uso de trampas de luz en sistemas de vigilancia y control de poblaciones colombianas de F. occidentalis en el contexto del manejo integrado de plagas.
Frankliniella occidentalis (Insecta: Thysanoptera) is a cosmopolitan species considered a major pest of ornamental, horticultural, and fruit crops. Colored traps with artificial or sunlight sources are used to monitor populations and manipulate adult behavior as a control alternative. In paired controlled trials, phototaxis of F. occidentalis was assessed at 21 wavelength combinations of 397 nm (violet), 462-463 nm (blue), 527-534 nm (green), 589-595 nm (yellow), 609 nm (orange), 628 nm (red), and white (432-618 nm) using low-cost light emitting diodes (LEDs). Females at one to two days of emergence and with four to five hours of starvation showed attraction and shorter response time to the (violet) and (yellow) combination (FP= 14, FN= 1) with an average response time of 2.763 ± 1.350 min (minimum response at 0.583 min and maximum of 4.417 min), compared to blue-green, green-violet, yellow-red, red-violet combinations. The results contribute to standardization processes for the design, implementation, and use of light traps in monitoring and control systems for Colombian populations of F. occidentalis in the context of integrated pest management.
Referencias
AIPH. (2022). International Statistics Flowers and Plants 2022. F Awisus. (f Awisus, Ed.; Vol. 70).
Al Murad, M., Razi, K., Jeong, B. R., Samy, P. M. A., y Muneer, S. (2021). Light Emitting Diodes (LEDs) as Agricultural Lighting: Impact and Its Potential on Improving Physiology, Flowering, and Secondary Metabolites of Crops. Sustainability, 13(4):1985. https://doi.org/10.3390/su13041985
Ben-Yakir, D. editor. (2020). Optical manipulation of arthropod pests and beneficials. CAB International.
Bian, L., Yang, P. X., Yao, Y. J., Luo, Z. X., Cai, X. M., y Chen, Z. M. (2016). Effect of Trap Color, Height, and Orientation on the Capture of Yellow and Stick Tea Thrips (Thysanoptera: Thripidae) and Nontarget Insects in Tea Gardens. Journal of Economic Entomology, 109(3):1241-1248. https://doi.org/10.1093/jee/tow007
Calixto-Álvarez, C. L. (2005). Trips del suborden Terebrantia (Insecta: Thysanoptera) from the Bogotá plateau.. Revista Colombiana de Entomología, 31(2):207-2013. https://doi.org/10.25100/socolen.v31i2.9446
Cao, Y., Li, C., Yang, H., Li, J., Li, S., Wang, Y., y Gao, Y. (2019). Laboratory and field investigation on the orientation of Frankliniella occidentalis (Thysanoptera: Thripidae) to more suitable host plants driven by volatiles and component analysis of volatiles. Pest Management Science, 75(3):598-606. https://doi.org/10.1002/ps.5223
Cohnstaedt, L. W., Disberger, J. C., Paulsen, E., y Duehl, A. J. (2018). Key Elements of Photo Attraction Bioassay for Insect Studies or Monitoring Programs. J.Vis. Exp, 137:57445. https://doi.org/10.3791/57445
Commonwealth of Australia. (2019). Final Pest Risk Analysis for cut flower and foliage Imports-part 1 (p. 244).
DANE. (2023). Bolentin Técnico. Departamento Administrativo Nacional de Estadística-Gobierno de Colombia. http://www.dane.gov.co/index.php/estadisticas-por-tema/comercio-internacional/exportaciones/exportacioneshistoricos
Davidson, M. M., Butler, R. C., y Teulon, D. A. J. (2006). Starvation period and age affect the response of female Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) to odor and visual cues. Journal of Insect Physiology, 52(7), 729-736. https://doi.org/10.1016/j.jinsphys.2006.03.013
Davidson, M. M., Butler, R. C., y Teulon, D. A. J. (2012). Response of Female Frankliniella occidentalis (Pergande) to Visual Cues and Para-anisaldehyde in a Flight Chamber. Journal of Insect Behavior, 25(3):297-307. https://doi.org/10.1007/s10905-011-9299-z
González-López, C. A. (2023) Desarrollo de un prototipo de trampa electromagnética para la captura de Frankliniella occidentalis (Pergande, 1895) (Thysanoptera: Thripidae) [Trabajo final maestría en Ciencias–Física]. Universidad Nacional de Colombia.
Govardoskii, V. I., Fyhrquist, N., Reuter, T., Kuzmin, D. G., y Donner, K. (2000). In search of the visual pigment template. Visual Neuroscience, 17(4), 509-528. https://doi.org/10.1017/S0952523800174036
Gunawardana, D. N., Li, D., Masumoto, M., Mound, L. A., O’Donnell, C. A., y Skarlinsky, T. L. (2017). Resolving the confused identity of Frankliniella panamensis (Thysanoptera: Thripidae). Zootaxa, 4323(1):125. https://doi.org/10.11646/zootaxa.4323.1.10
Henze, M. J., Dannenhauer, K., Kohler, M., Labhart, T., y Gesemann, M. (2012). Opsin evolution and expression in Arthropod compound Eyes and Ocelli: Insights from the cricket Gryllus bimaculatus. BMC Evolutionary Biology, 12(1), 163. https://doi.org/10.1186/1471-2148-12-163
International Trade Centre. (2023). Trade Map. List of products imported by Colombia, 0603 Flores y capullos, cortados para ramos o adornos, frescos, secos, blanqueados, teñidos, impregnados. https://www.trademap.org/Index.aspx
Johansen, N. S., Torp, T., y Solhaug, K. A. (2018). Phototactic response of Frankliniella occidentalis to sticky traps with blue light emitting diodes in herb and Alstroemeria greenhouses. (pp. 120-128) Crop Protection
Johansen, N. S., Vänninen, I., Pinto, D. M., Nissinen, A. I., y Shipp, L. (2011). In the light of new greenhouse technologies: 2. Direct effects of artificial lighting on arthropods and integrated pest management in greenhouse crops. Annals of Applied Biology, 159(1):1-27. https://doi.org/10.1111/j.1744-7348.2011.00483.x
Kindt, F., Joosten, N. N., Peters, D., y Tjallingii, W. F. (2003). Characterisation of the feeding behaviour of western flower thrips in terms of electrical penetration graph (EPG) waveforms. Journal of Insect Physiology, 49(3):183-191. https://doi.org/10.1016/S0022-1910(02)00255-X
Li, D.Y., Zhou, D., Zhi, J.R., Yue, W.B., y Li, S.X. (2023). Effects of Different Parts of the Rose Flower on the Development, Fecundity, and Life Parameters of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Insects, 14(1): 88. https://doi.org/10.3390/insects14010088
Liu, Q., Jiang, Y., Miao, J., Gong, Z., Li, T., Duan, Y., y Wu, Y. (2019). Visual response effects of western flower thrips manipulated by different light spectra. International Journal of Agricultural and Biological Engineering, 12(5):21-27. https://doi.org/10.25165/j.ijabe.20191205.4922
Liu, Q., Wu, Y.,y Zhao, M. (2022). Photo-induced visual response of western flower thrips attracted and repulsed by their phobotaxis spectrum light. International Journal of Agricultural and Biological Engineering, 15(2):48-57. https://doi.org/10.25165/j.ijabe.20221502.7049
Lopez-Reyes, K., Armstrong, K. F., Teulon, D. A. J., Butler, R. C., Van Dooremalen, C., Roher, M., y Van Tol, R. W. H. M. (2022a). Colour Response in Western Flower Thrips Varies Intraspecifically. Insects, 13(6):538. https://doi.org/10.3390/insects13060538
Lopez-Reyes, K., Armstrong, K. F., Van Tol, R. W. H. M., Teulon, D. A. J., y Bok, M. J. (2022b). Colour vision in thrips (Thysanoptera). Philosophical Transactions of the Royal Society B: Biological Sciences, 377(1862):20210282. https://doi.org/10.1098/rstb.2021.0282
Mainali, B. P., y Lim, U. T. (2010). Circular yellow sticky trap with black background enhances attraction of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Applied Entomology and Zoology, 45(1): 207-213. https://doi.org/10.1303/aez.2010.207
Matteson, N. A., y Terry, L. I. (1992). Response to color by male and female Frankliniella occidentalis during swarming and non-swarming behavior. Entomologia Experimentalis et Applicata, 63(2):187-201. https://doi.org/10.1111/j.1570-7458.1992.tb01573.x
McCormack, K. (2015). Enhancing the monitoring and trapping of protected crop pests by incorporating LED technology into existing traps. University of Edinburgh.
Moritz, G., Mound, L. A., Morris, D. C., y Goldarazena, A. (2004). Pest thrips of the world—Visual and molecular identification of pest thrips. Thrips of the world. https://thripsnet.zoologie.uni-halle.de/key-ser ver-neu/data/09070302-040a-4006-8c08-0e0105060801/media/Html/index.html
Murata, M., Hariyama, T., Yamahama, Y., Toyama, M., y Ohta, I. (2018). In the presence of red light, cucumber and possibly other host plants lose their attractability to the melon thrips Thrips palmi (Thysanoptera: Thripidae). Applied Entomology and Zoology, 53(1), 117-128. https://doi.org/10.1007/s13355-017-0537-5
Murata, M., Hariyama, T., Yamahama, Y., y Toyama, M. (2017). Red light deters female adults of the melon thrips.pdf. Annual Report of The Kansai Plant Protection Society. https://doi.org/10.4165/kapps.59.93
Ogino, T., Uehara, T., Muraji, M., Yamaguchi, T., Ichihashi, T., Suzuki, T., Kainoh, Y., y Shimoda, M. (2016). Violet LED light enhances the recruitment of a thrip predator in open fields. Scientific Reports, 6(1):32302. https://doi.org/10.1038/srep32302
Otani Y., Wakakuwa M., y Arikawa K. (2014). Relationship between Action Spectrum and Spectral Sensitivity of Compound Eyes Relating Phototactic Behavior of the Western Flower Thrips, Frankliniella occidentalis. Japanese Journal of Applied Entomology and Zoology, 58(3):177-185. https://doi.org/10.1303/jjaez.2014.177
Otieno, J. A., Stukenberg, N., Weller, J., y Poehling, H.M. (2018). Efficacy of LED-enhanced blue sticky traps combined with the synthetic lure Lurem-TR for trapping of western flower thrips (Frankliniella occidentalis). Journal of Pest Science, 91(4):1301-1314. https://doi.org/10.1007/s10340-018-1005-x
Park, J.H. y Lee, H.S. (2017). Phototactic behavioral response of agricultural insects and stored-product insects to light-emitting diodes (LEDs). Applied Biological Chemistry, 60(2):137-144. https://doi.org/10.1007/s13765-017-0263-2
Pizzol, J., Nammour, D., Hervouet, P., Bout, A., Desneux, N., y Mailleret, L. (2010). Comparison of two methods of monitoring thrips populations in a greenhouse rose crop. Journal of Pest Science, 83(2):191-196. https://doi.org/10.1007/s10340-010-0286-5
Reitz, S. R., Gao, Y., Kirk, W. D. J., Hoddle, M. S., Leiss, K. A., y Funderburk, J. E. (2020). Invasion Biology, Ecology, and Management of Western Flower Thrips. Annual Review of Entomology, 65(1):17-37. https://doi.org/10.1146/annurev-ento-011019-024947
Ren, X., Wu, S., Xing, Z., Xu, R., Cai, W., y Lei, Z. (2020). Behavioral Responses of Western Flower Thrips (Frankliniella occidentalis ) to Visual and Olfactory Cues at Short Distances. Insects, 11(3):177. https://doi.org/10.3390/insects11030177
Riley, D. G., Joseph, S. V., Srinivasan, R., y Diffie, S. (2011). Thrips Vectors of Tospoviruses. Journal of Integrated Pest Management, 2(1):I1-I10. https://doi.org/10.1603/IPM10020
RStudio Team. (2022). RStudio: Integrated Development for R. PBC, Boston, MA [Software]. http://www.rstudio.com
Rushton, W. A. H. (1972). Review Lecture. Pigments and signals in colour vision. The Journal of Physiology, 22(3). https://doi.org/10.1113/jphysiol.1972.sp009719.
Sampson, C. y Kirk, W. D. J. (2013). Can Mass Trapping Reduce Thrips Damage and Is It Economically Viable? Management of the Western Flower Thrips in Strawberry. PLoS ONE, 8(11), e80787. https://doi.org/10.1371/journal.pone.0080787
Silva-Castaño, A. F. y Brochero, H. L. (2021). Abundance and flight activity of Frankliniella occidentalis (Thysanoptera: Thripidae) in a female chrysanthemum crop for seeding, Colombia. Agronomía Colombiana, 39(2): 216-225. https://doi.org/10.15446/agron.colomb.v39n2.95978
Strzyzewski, I., Funderburk, J., y Martini, X. (2023). Specificity of vectoring and non-vectoring flower thrips species to pathogen-induced plant volatiles. Journal of Pest Science, 96:441-449. https://doi.org/10.1007/s10340-022-01588-z
Stukenberg, N., Pietruska, M., Waldherr, A., y Meyhöfer, R. (2020). Wavelength-Specific Behavior of the Western Flower Thrips (Frankliniella occidentalis): Evidence for a Blue-Green Chromatic Mechanism. Insects, 11(7):423. https://doi.org/10.3390/insects11070423
Tay, A., Lafont, F., Balmat, J. F., Pessel, N., y Lhoste-Drouineau, A. (2021). Decision support system for Western Flower Thrips management in roses production. Agricultural Systems, 187:103019. https://doi.org/10.1016/j.agsy.2020.103019
Van Der Kooi, C. J., Stavenga, D. G., Arikawa, K., Belušič, G., y Kelber, A. (2021). Evolution of Insect Color Vision: From Spectral Sensitivity to Visual Ecology. Annual Review of Entomology, 66(1):435-461. https://doi.org/10.1146/annurev-ento-061720-071644.
Van Tol, R. W. H. M., Torn, J., Roher, M., Schreurs, A., y van Dooremalen, C. (2021). Haze of glue determines preference of western flower thrips (Frankliniella occidentalis) for yellow or blue traps.Scientific Reports, 11(6557). https://doi.org/10.1038/s41598-021-86105-5
Vänninen, I., Pinto, D. M., Nissinen, A. I., Johansen, N. S., y Shipp, L. (2010). In the light of new greenhouse technologies: 1. Plant-mediated effects of artificial lighting on arthropods and tritrophic interactions. Annals of Applied Biology, 157(3):393-414. https://doi.org/10.1111/j.1744-7348.2010.00438.x
Vernon, R. S., y Gillespie, D. R. (1990). Response of Frankliniella occidentalis (Thysanoptera: Thripidae) and Trialeurodes vaporariorum (Homoptera: Aleyrodidae) to fluorescent traps in a cucumber greenhouse. Journal of the Entomological Society of British, 87, 38-41. https://www.biodiversitylibrary.org/item/181002
Yang, J.Y., Sung, B.K., y Lee, H.S. (2015). Phototactic behavior 8: Phototactic behavioral responses of western flower thrips, Frankliniella occidentalis Pergande (Thysanoptera: Thripidae), to light-emitting diodes. Journal of the Korean Society for Applied Biological Chemistry, 58(3):359-363. https://doi.org/10.1007/s13765-015-0055-5
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. La aceptación de manuscritos por parte de la revista implicará, además de su edición electrónica de acceso abierto bajo licencia Attribution-NonCommercial-ShareAlike 4.0 (CC BY NC SA), la inclusión y difusión del texto completo a través del repositorio institucional de la Universidad Nacional de Colombia y en todas aquellas bases de datos especializadas que el editor considere adecuadas para su indización con miras a incrementar la visibilidad de la revista.
2. Acta Biológica Colombiana permite a los autores archivar, descargar y compartir, la versión final publicada, así como las versiones pre-print y post-print incluyendo un encabezado con la referencia bibliográfica del articulo publicado.
3. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
4. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos institucionales, en su página web o en redes sociales cientificas como Academia, Researchgate; Mendelay) lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).