Publicado
MOSQUITO CONTROL AND SCRAP TIRES: SAME OLD PROBLEM, NO RELIABLE STRATEGIES
Control de mosquitos y neumáticos usados: el mismo viejo problema, sin estrategias fiables
DOI:
https://doi.org/10.15446/abc.v29n1.106021Palabras clave:
Aedes spp, community participation, larval control, used tires (en)Aedes spp, participación comunitaria, control de larvas, neumáticos usados (es)
Descargas
Artificial breeding sites in urban areas have favored the domestication of mosquito vectors. Scrap tires are an important breeding source for mosquito larvae. Few efforts have been made to establish appropriate management measures for used tires, which poses a challenge for larval control activities. Here we mention the inconveniences of tire disposal and the physical and chemical control alternatives. We also note the available methods of larvicide application against larvae in tires and the advantages and disadvantages of each method. The possible effect of overdose/underdose on the development of resistance is considered. Finally, we mention that the actions of vector control programs, the local or state government policies, and active community participation must be interconnected to develop effective tire management.
Los criaderos artificiales de las zonas urbanas han favorecido la domesticación de los mosquitos vectores. Los neumáticos usados son una importante fuente de cría para las larvas de mosquitos. Se han realizado pocos esfuerzos para establecer medidas de gestión adecuadas para los neumáticos usados, lo que supone un reto para las actividades de control larvario. Aquí mencionamos los inconvenientes para la eliminación de los neumáticos y las alternativas de control físico y químico. También mencionamos los métodos disponibles de aplicación de larvicidas contra las larvas en los neumáticos y las ventajas y desventajas de cada método. Se considera el posible efecto de la sobredosis/subdosis en el desarrollo de resistencia. Finalmente, mencionamos que las acciones de los programas de control de vectores, las políticas del gobierno local o estatal y la participación activa de la comunidad deben estar interconectadas para desarrollar una gestión efectiva de los neumáticos usados.
Referencias
Alphey, L., Benedict, M., Bellini, R., Clark, G. G., Dame, D. A., Service, M. W. and Dobson S. L. (2010). Sterileinsect methods for control of mosquito-borne diseases: An analysis. Vector-Borne Zoonotic Dis, 10(3), 295–311. https://doi:10.1089/vbz.2009.0014 DOI: https://doi.org/10.1089/vbz.2009.0014
Alphey, L., McKemey, A., Nimmo, D., Neira-Oviedo, M., Lacroix, R., Matzen, K. and Beech, C. (2013). Genetic control of Aedes mosquitoes. Pathogens and Global Health, 107(4), 170-179. https://doi:10.1179/2047773213Y.0000000095 DOI: https://doi.org/10.1179/2047773213Y.0000000095
Becker, N., Ludwig, M. and Su, T. (2018). Lack of resistance in Aedes vexans field populations after 36 years of Bacillus thuringiensis subsp. israelensis applications in the Upper Rhine Valley, Germany. J. Am. Mosq. Control Assoc, 34(2), 154-7. https://doi.org/10.2987/17-6694.1 DOI: https://doi.org/10.2987/17-6694.1
Bennett, K. L., Gómez Martínez, C., Almanza, A., Rovira, J. R., McMillan, W. O., Enriquez, V., Barraza, E., Diaz, M., Sanchez-Galan, J. E., Whiteman, A., Gittens, R. A. and Loaiza, J. R. (2019). High infestation of invasive Aedes mosquitoes in used tires along the local transport network of Panama. Parasite and Vectors, 12(264). https://doi.org/10.1186/s13071-019-3522-8 DOI: https://doi.org/10.1186/s13071-019-3522-8
Braga, I. A., Mello, C. B., Montella, I. R., Lima, J. B., Martins, A., Medeiros, P. F. and Valle, D. (2005). Effectiveness of methoprene, an insect growth regulator, against temephos-resistant Aedes aegypti populations from different Brazilian localities, under laboratory conditions. Journal of Medical Entomology, 42(5), 830-837. https://doi.org/10.1093/jmedent/42.5.830 DOI: https://doi.org/10.1093/jmedent/42.5.830
Burtis, J. C., Bickerton, M. W., Indelicato, N., Poggi, J. D., Crans, S. C. and Harrington, L. C. (2022). Effectiveness of a Buffalo Turbine and A1 Mist sprayer for the areawide deployment of larvicide for mosquito control in an urban residential setting. Journal of Medical Entomology, 59(3), 903-910. https://doi.org/10.1093/jme/tjac017 DOI: https://doi.org/10.1093/jme/tjac017
CENAPRECE. (2016). Guía Metodológica para las Acciones de Control Larvario. Subsecretaria de Prevención y Promoción de la Salud. Centro Nacional de Prevención y Control de Enfermedades. Secretaria de Salud. México. Available from: https://www.gob.mx/cms/uploads/attachment/file/87966/Guia_operativa_para_control_larvario.pdf
Chuc, S., Hurtado-Díaz, M., Schilmann, A., Riojas-Rodríguez, H., Rangel, H. y González-Fernández, M. I. (2013). Condiciones locales de vulnerabilidad asociadas con dengue en dos comunidades de Morelos. Salud Publica de Mexico, 55, 170-8. Avaliable from https://saludpublica.mx/index.php/spm/article/view/7199 DOI: https://doi.org/10.1590/S0036-36342013000200008
Chung, Y. K., Lamphua, S. G., Chua, Y. T. and Yatiman, R. (2001). Evaluation of biological and chemical insecticide mixture against Aedes aegypti larvae and adults by thermal fogging in Singapore. Medical and Veterinary Entomology, 15(3), 321-327. https://doi.org/10.1046/j.0269-283x.2001.00311.x DOI: https://doi.org/10.1046/j.0269-283x.2001.00311.x
Czerniewicz, P., Chrzanowski, G., Sprawka, I. and Sytykiewicz, H. (2018). Aphicidal activity of selected Asteraceae essential oils and their effect on enzyme activities of the green peach aphid, Myzus persicae (Sulzer). Pesticide Biochemistry and Physiology, 145, 84–92. https://doi.org/10.1016/j.pestbp.2018.01.010 DOI: https://doi.org/10.1016/j.pestbp.2018.01.010
de Araújo, A. P., Paiva, M., Cabral, A. M., Cavalcanti, A., Pessoa, L., Diniz, D., Helvecio, E., da Silva, E., da Silva, N. M., Anastácio, D. B., Pontes, C., Nunes, V., de Souza, M., Magalhães, F., de Melo Santos, M. and Ayres, C. (2019). Screening Aedes aegypti (Diptera: Culicidae) populations from Pernambuco, Brazil for resistance to temephos, diflubenzuron, and cypermethrin and characterization of potential resistance mechanisms. Journal of Insect Science, 19(3). https://doi.org/10.1093/jisesa/iez054 DOI: https://doi.org/10.1093/jisesa/iez054
de Little, S. C., Williamson, G. J., Bowman, D. M., Whelan, P. I., Brook, B. W. and Bradshaw, C. J. (2012). Experimental comparison of aerial larvicides and habitat modification for controlling disease-carrying Aedes vigilax mosquitoes. Pest Management Science, 68(5),709-17. https://doi.org/10.1002/ps.2317 DOI: https://doi.org/10.1002/ps.2317
Doud, C. W., Hanley, A. M., Chalaire, K. C., Richardson, A. G., Britch, S. C. and Xue, R. D. (2014). Truck-mounted area-wide application of pyriproxyfen targeting Aedes aegypti and Aedes albopictus in Northeast Florida. Journal of the American Mosquito Control Association, 30(4), 291-297. https://doi.org/10.2987/14-6413.1 DOI: https://doi.org/10.2987/14-6413.1
Farajollahi, A., Williams, G. M., Condon, G. C., Kesavaraju, B., Unlu, I. and Gaugler, R. (2013). Assessment of a direct application of two Bacillus thuringiensis israelensis formulations for immediate and residual control of Aedes albopictus. Journal of the American Mosquito Control Association, 29(4), 385-388. https://doi.org/10.2987/13-6332.1 DOI: https://doi.org/10.2987/13-6332.1
Feng, J. C. and Sidhu, S. S. (1989). Distribution of blank hexazinone granules from aerial and ground applicators. Weed Technology, 3(2), 275-281. https://doi:10.1017/S0890037X00031808 DOI: https://doi.org/10.1017/S0890037X00031808
Fernández-Salas, I., Danis-Lozano, R., Casas-Martínez, M., Ulloa, A., Bond, J. G., Marina, C. F., Lopez-Ordóñez, T., Elizondo-Quiroga, A., Torres-Monzón, J. A. and Díaz-González, E. E. (2015). Historical inability to control Aedes aegypti as a main contributor of fast dispersal of chikungunya outbreaks in Latin America. Antiviral Research, 124, 30-42. https://doi.org/10.1016/j.antiviral.2015.10.015 DOI: https://doi.org/10.1016/j.antiviral.2015.10.015
George, L., Lenhart, A., Toledo, J., Lazaro, A., Han, W. W., Velayudhan, R., Runge Ranzinger, S. and Horstick, O. (2015). Community-Effectiveness of Temephos for Dengue Vector Control: A Systematic Literature Review. PLoS neglected tropical diseases, 9(9), e0004006. https://doi.org/10.1371/journal.pntd.0004006 DOI: https://doi.org/10.1371/journal.pntd.0004006
Haddi, K., Turchen, L. M., Viteri-Jumbo, L. O., Guedes, R. N., Pereira, E. J., Aguiar, R. W. and Oliveira, E. E. (2020). Rethinking biorational insecticides for pest management: unintended effects and consequences. Pest Management Science, 76(7), 2286-2293. https://doi.org/10.1002/ps.5837 DOI: https://doi.org/10.1002/ps.5837
Harwood, J. F., Farooq, M., Turnwall, B. T. and Richardson, A. G. (2015). Evaluating liquid and granular Bacillus thuringiensis var. israelensis broadcast applications for controlling vectors of dengue and chikungunya viruses in artificial containers and tree holes. Journal of Medical Entomology, 52(4), 663–671. https://doi.org/10.1093/jme/tjv043 DOI: https://doi.org/10.1093/jme/tjv043
Higa, Y., Yen, N. T., Kawada, H., Son, T. H., Hoa, N. T. and Takagi, M. (2010). Geographic distribution of Aedes aegypti and Aedes albopictus collected from used tires in Vietnam. Journal of American Mosquito Control Association, 26(1), 1–9. https://doi.org/10.2987/09-5945.1 DOI: https://doi.org/10.2987/09-5945.1
Jacups, S. P., Rapley, L. P., Johnson, P. H., Benjamin, S. and Ritchie, S. A. (2013). Bacillus thuringiensis var. israelensis misting for control of Aedes in cryptic ground containers in north Queensland, Australia. American Journal of Tropical Medicine and Hygiene, 88(3), 490-6. https://doi.org/10.4269/ajtmh.12-0385 DOI: https://doi.org/10.4269/ajtmh.12-0385
Jamnback, H. A., Duflo, T. and Marr, D. (1970). Aerial application of larvicides for control of Simulium damnosum in Ghana: a preliminary trial. Bulletin of the World Health Organization, 42, 826-828. https://apps.who.int/iris/bitstream/handle/10665/262278/PMC2427477.pdf?sequence=1&isAllowed=y
Knapp, J. A., Waits, C. M., Briley, A. K. C., Cilek, J. E., Richardson, A. G. and Pruszynski, C. (2018). Application efficacy of VectoBac WDG against larval Aedes aegypti using thermal fog technology. Journal of the American Mosquito Control Association, 34(1), 75-77. https://doi.org/10.2987/17-6705.1 DOI: https://doi.org/10.2987/17-6705.1
Lucia, A., Harburguer, L., Licastro, S., Zerba, E. and Masuh, H. (2009). Efficacy of a new combined larvicidal–adulticidal ultralow volume formulation against Aedes aegypti (Diptera: Culicidae), vector of dengue. Parasitology Research, 104, 1101-1107. https://doi.org/10.1007/s00436-008-1294-8 DOI: https://doi.org/10.1007/s00436-008-1294-8
Malla, R. K., Mandal, K. K., Dutta, M. and Chandra, G. (2020). An estimation of monthly propagation of dengue vector Aedes aegypti in rainwater filled tires. International Journal of Pest Management, 66(3), 239-242. https://doi.org/10.1080/09670874.2019.1616130 DOI: https://doi.org/10.1080/09670874.2019.1616130
Marcombe, S., Chonephetsarath, S., Thammavong, P. and Brey, P. T. (2018). Alternative insecticides for larval control of the dengue vector Aedes aegypti in Lao PDR: insecticide resistance and semi-field trial study. Parasites and Vectors, 11(616), 1-8. https://doi.org/10.1186/s13071-018-3187-8 DOI: https://doi.org/10.1186/s13071-018-3187-8
Mariappan, T. and Tyagi, B.K. (2018). Chemical control of Culex quinquefasciatus (Say, 1823), the principal vector of Bancroftian filariasis, with emphasis on resistance development against insecticides in India. In: Tyagi, B. (eds) Lymphatic Filariasis. Springer, Singapore. https://doi.org/0.1007/978-981-13-1391-2_23 DOI: https://doi.org/10.1007/978-981-13-1391-2_23
Nathan, M. B. (1993). Critical review of Aedes aegypti control programs in the Caribbean and selected neighboring countries. Journal of the American Mosquito Control Association, 9, 1-1. https://core.ac.uk/download/pdf/21597317.pdf
Ogunlade, S. T., Meehan, M. T., Adekunle, A. I., Rojas, D. P., Adegboye, O. A. and McBryde, E. S. (2021). A Review: Aedes-Borne Arboviral Infections, Controls and Wolbachia-Based Strategies. Vaccines, 9(1), 32. https://doi:10.3390/vaccines9010032 DOI: https://doi.org/10.3390/vaccines9010032
Organización Panamericana de la Salud (OPS). (2013). Estrategia para la toma de decisiones en el marco del manejo integrado de vectores de malaria (ED MIVM). Washington, D.C.
Paul, A., Harrington, L. C., Zhang, L. and Scott, J. G. (2005). Insecticide resistance in Culex pipiens from New York. Journal of the American Mosquito Control Association, 21(3), 305-309. https://doi.org/10.2987/8756-971X(2005)21[305:IRICPF]2.0.CO;2 DOI: https://doi.org/10.2987/8756-971X(2005)21[305:IRICPF]2.0.CO;2
Powell, J. R. and Tabachnick, W. J. (2013). History of domestication and spread of Aedes aegypti-a review. Memórias do Instituto Oswaldo Cruz, 108(1), 11-17. https://doi.org/10.1590/0074-0276130395 DOI: https://doi.org/10.1590/0074-0276130395
Pruszynski, C. A., Hribar, L. J., Mickle, R. and Leal, A. L. (2017). A large scale biorational approach using Bacillus t,huringiensis israeliensis (strain AM65-52) for managing Aedes aegypti populations to prevent dengue, chikungunya and Zika transmission. PloS One, 12, e0170079. https://doi.org/10.1371/journal.pone.0170079 DOI: https://doi.org/10.1371/journal.pone.0170079
Reiter, P. and Sprenger, P. (1987). The used tire trade: a mechanism for the worldwide dispersal of container breeding mosquitoes. Journal of the American Mosquito Control Association, 3(3), 494-501. https://www.biodiversitylibrary.org/content/part/JAMCA/JAMCA_V03_N3_P494-501.pdf
Ritchie, S. A., Rapley, L. P., & Benjamin, S. (2010). Bacillus thuringiensis var. israelensis (Bti) provides residual control of Aedes aegypti in small containers. American Journal of Tropical Medicine and Hygiene, 82(6), 1053–1059. https://doi.org/10.4269/ajtmh.2010.09-0603 DOI: https://doi.org/10.4269/ajtmh.2010.09-0603
Rodríguez, M. M., Bisset, J. A. and Fernández, D. (2007). Levels of insecticide resistance and resistance mechanisms in Aedes aegypti from some Latin American countries. Journal of the American Mosquito Control Association, 23(4) 420-429. https://doi.org/10.2987/5588.1 DOI: https://doi.org/10.2987/5588.1
Russell, T. L., Gatton, M. L., Ryan, P. A. and Kay, B. H. (2009). Quality assurance of aerial applications of larvicides for mosquito control: effects of granule and catch tray size on field monitoring programs. Journal of Economic Entomology, 102(2), 507-514. https://doi.org/10.1603/029.102.0207 DOI: https://doi.org/10.1603/029.102.0207
Scholte, E. J., Den Hartog, W., Dik, M., Schoelitsz, B., Brooks, M., Schaffner, F., Foussadier, R., Braks, M. and Beeuwkes, J. (2010). Introduction and control of three invasive mosquito species in the Netherlands, July-October 2010. Eurosurveillance, 15(45), 19710. https://doi.org/10.2807/ese.15.45.19710-en DOI: https://doi.org/10.2807/ese.15.45.19710-en
Singh, S., Pandher, S., Sharma, R. K. and Kumar, R. (2013). Insect growth regulators: practical use, limitations and future. Journal of Eco-friendly Agriculture, 8(1), 1-14. http://ecoagrijournal.com/wp-content/uploads/2019/10/fullpaper-81.pdf
Sparks, T. C., Dripps, J. E., Watson, G. B. and Paroonagian, D. (2012). Resistance and cross-resistance to the spinosyns–a review and analysis. Pesticide Biochemistry and Physiology, 102(1), 1-10. https://doi.org/10.1016/j.pestbp.2011.11.004 DOI: https://doi.org/10.1016/j.pestbp.2011.11.004
Su, T. and Cheng, M. L. (2014). Cross resistances in spinosad-resistant Culex quinquefasciatus (Diptera: Culicidae). Journal of Medical Entomology, 51(2), 428-435. https://doi.org/10.1603/me13207 DOI: https://doi.org/10.1603/ME13207
Sulaiman, S., Pawanchee, Z. A., Othman, H. F., Jamal, J., Wahab, A., Sohadi, A. R. and Pandak, A. (2000). Field evaluation of deltamethrin/S-bioallethrin/piperonyl butoxide and cyfluthrin against dengue vectors in Malaysia. Journal of Vector Ecology, 25, 94-97.
Sun, D., Williges, E., Unlu, I., Healy, S., Williams, G. M., Obenauer, P., Hughes, T., Schoeler, G., Gaugler, R., Fonseca, D. and Farajollahi, A. (2014). Taming a tiger in the city: comparison of motorized backpack applications and source reduction against the Asian tiger mosquito, Aedes albopictus. Journal of the American Mosquito Control Association, 30(2), 99-105. https://doi.org/10.2987/13-6394.1 DOI: https://doi.org/10.2987/13-6394.1
Toledo-Romaní, M. E., Baly-Gil, A., Ceballos-Ursula, E., Boelaert, M. and Van der Stuyft, P. (2006). Participación comunitaria en la prevención del dengue: un abordaje desde la perspectiva de los diferentes actores sociales. Salud Pública de México, 48, 39-44. Available from: https://saludpublica.mx/index.php/spm/article/view/6669/8290 DOI: https://doi.org/10.1590/S0036-36342006000100007
Unlu, I., Faraji, A., Williams, G. M., Marcombe, S., Fonseca, D. M. and Gaugler, R. (2019). Truck-mounted area-wide applications of larvicides and adulticides for extended suppression of adult Aedes albopictus. Pest Management Science, 75(4), 1115-1122. https://doi.org/10.1002/ps.5227 DOI: https://doi.org/10.1002/ps.5227
Unlu, I. and Farajollahi, A. (2012). To catch a tiger in a concrete jungle: operational challenges for trapping Aedes albopictus in an urban environment. Journal of the American Mosquito Control Association, 28(4), 334-337. https://doi.org/10.2987/12-6262R.1 DOI: https://doi.org/10.2987/12-6262R.1
Uriarte-Miranda, M. L., Caballero-Morales, S. O., Martinez-Flores, J. L., Cano-Olivos, P. and Akulova, A. A. (2018). Reverse logistic strategy for the management of tire waste in Mexico and Russia: Review and conceptual model. Sustainability, 10(10), 3398. https://doi.org/10.3390/su10103398 DOI: https://doi.org/10.3390/su10103398
Villegas-Trejo, A., Che-Mendoza, A., González-Fernández, M., Guillermo-May, G., González-Bejarano, H., Dzul-Manzanilla, F., Ulloa-García, A., Danis-Lozano, R. and Manrique-Saide, P. (2011). Control enfocado de Aedes aegypti en localidades de alto riesgo de transmisión de dengue en Morelos, México. Salud Pública de México, 53(2), 141-151. Available from: https://saludpublica.mx/index.php/spm/article/view/7035/9060 DOI: https://doi.org/10.1590/S0036-36342011000200007
Wei, H., Liu, J., Li, B., Zhan, Z., Chen, Y., Tian, H., Lin, S. and Gu, X. (2015). The toxicity and physiological effect of essential oil from Chenopodium ambrosioides against the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Crop Protection, 76, 68-74. https://doi.org/10.1016/j.cropro.2015.06.013 DOI: https://doi.org/10.1016/j.cropro.2015.06.013
Wilke, A. B., Vasquez, C., Carvajal, A., Ramirez, M., Cardenas, G., Petrie, W. D. and Beier, J. C. (2021). Effectiveness of adulticide and larvicide in controlling high densities of Aedes aegypti in urban environments. PloS One, 16, e0246046. https://doi.org/10.1371/journal.pone.0246046 DOI: https://doi.org/10.1371/journal.pone.0246046
Yee, D. A. (2008). Tires as habitats for mosquitoes: a review of studies within the eastern United States. Journal of Medical Entomology, 45, 581-593. https://doi.org/10.1093/jmedent/45.4.581 DOI: https://doi.org/10.1603/0022-2585(2008)45[581:TAHFMA]2.0.CO;2
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Mona-Maria Narra, Djangbadjoa Gbiete, Komi Agboka, Satyanarayana Narra, Michael Nelles. (2024). Tracing the EoL Tyre Management Chain in Togo with Focus on Implementing a Tyre Recycling Plant. Sustainability, 16(21), p.9193. https://doi.org/10.3390/su16219193.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. La aceptación de manuscritos por parte de la revista implicará, además de su edición electrónica de acceso abierto bajo licencia Attribution-NonCommercial-ShareAlike 4.0 (CC BY NC SA), la inclusión y difusión del texto completo a través del repositorio institucional de la Universidad Nacional de Colombia y en todas aquellas bases de datos especializadas que el editor considere adecuadas para su indización con miras a incrementar la visibilidad de la revista.
2. Acta Biológica Colombiana permite a los autores archivar, descargar y compartir, la versión final publicada, así como las versiones pre-print y post-print incluyendo un encabezado con la referencia bibliográfica del articulo publicado.
3. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
4. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos institucionales, en su página web o en redes sociales cientificas como Academia, Researchgate; Mendelay) lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).