LEAF LITTER DECOMPOSITION FROM THREE SPECIES PRESENT IN A TROPICAL DRY FOREST STREAM OVER A RIPARIAN QUALITY GRADIENT.
DESCOMPOSICIÓN DE LA HOJARASCA DE TRES ESPECIES PRESENTES EN UN ARROYO DE BOSQUE SECO TROPICAL A LO LARGO DE UN GRADIENTE DE CALIDAD RIPARIA.
DOI:
https://doi.org/10.15446/abc.v30n1.110810Palabras clave:
Colombia, decomposition rate, Magdalena River, stream ecology (en)Colombia, tasa de descomposición, río Magdalena, ecología de arroyos (es)
Descargas
Riparian litter fall decomposition is an important topic when we are considering restoration projects, especially in vulnerable regions such as tropical dry forests. Despite this, we do not know how litter decomposition in dry forests can be influenced by variables like water physicochemical or species plants. To understand this process, we propose two hypotheses: The litter decomposition is different according with the plant species, where higher leaf cellulose and secondary compounds are related to slower decomposition rate. And litter decomposition rates will reflect differences in seasonal and stream physicochemical changes according with the riparian quality. We select leaves from three common species in the area (G. angustifolia, G. ulmifolia, and Z. longifolia) to record the decomposition rate according to the negative exponential regression model, with the environmental characterization (climatic physicochemical and QBR index data) to find significant differences. We observe differences in decomposition rates according to litter plant species, due to leaves chemical composition. In contrast, there were no significant relations between decomposition rates and environmental data according to sampling zones and seasons. We reinforce the idea that in neotropical systems, litter decomposition is influenced by leaf species. This help to understand the importance of plant diversity, and supports that dry forest stream restoration projects need to focus on increasing the riparian diversity to set an adequate litter input.
La descomposición de la hojarasca es un tema importante cuando nos planteamos proyectos de restauración, especialmente en regiones vulnerables como los bosques secos tropicales. A pesar de ello, no sabemos cómo la fisicoquímica del agua o las especies arbóreas influyen en la descomposición de la hojarasca de los bosques secos. Para entender este proceso, proponemos dos hipótesis: La descomposición de la hojarasca difiere según la especie, donde una mayor cantidad de celulosa y compuestos secundarios está relacionada con una tasa de descomposición más lenta. Y las tasas de descomposición reflejarán diferencias según los cambios estacionales y fisicoquímicos de acuerdo a la calidad riparia del arroyo. Seleccionamos hojas de tres especies comunes en la zona (G. angustifolia, G. ulmifolia y Z. longifolia) para registrar la tasa de descomposición según el modelo de regresión exponencial, con la caracterización ambiental (datos fisicoquímicos climáticos e índice QBR) para encontrar diferencias significativas. Observamos que las tasas de descomposición varían según las especies de hojarasca, debido a la composición química de las hojas. Por el contrario, no se encontraron relaciones entre las tasas de descomposición y los datos ambientales según las zonas y estaciones de muestreo. Reforzamos la idea de que en los sistemas neotropicales la descomposición de la hojarasca está influida por las especies. Esto ayuda a comprender la importancia de la diversidad vegetal, y apoya la idea de que los proyectos de restauración de arroyos en bosques secos deben centrarse en aumentar la diversidad riparia para establecer un aporte adecuado de hojarasca.
Referencias
Acosta, R., Ríos, B., Rieradevall, M., & Prat, N. (2009). Propuesta de un protocolo de evaluación de la calidad ecológica de ríos andinos (CERA) y su aplicación a dos cuencas en Ecuador y Perú. Limnetica, 28(1), 35–64.
Andrade, J. R. De, Gomes, C., Lopes, R., Ayron, B., Aguiar, D. S., Kelly, V., & Araujo, R. De. (2022). Short timescale regeneration in a tropical dry forest in Brazil. Research, Society and Development, 11(5), 1–14.
Ardón, M., & Pringle, C. M. (2007). The quality of organic matter mediates the response of heterotrophic biofilms to phosphorus enrichment of the water column and substratum. Freshwater Biology, 52(9), 1762–1772. https://doi.org/10.1111/j.1365-2427.2007.01807.x
Ardón, M., & Pringle, C. M. (2008). Do secondary compounds inhibit microbial- and insect-mediated leaf breakdown in a tropical rainforest stream, Costa Rica? Oecologia, 155(2), 311–323. https://doi.org/10.1007/s00442-007-0913-x
Ardón, M., Pringle, C. M., & Eggert, S. L. (2009). Does leaf chemistry differentially affect breakdown in tropical vs temperate streams? Importance of standardized analytical techniques to measure leaf chemistry. Journal of the North American Benthological Society, 28(2), 440–453. https://doi.org/10.1899/07-083.1
Ardón, M., Stallcup, L. A., & Pringle, C. M. (2006). Does leaf quality mediate the stimulation of leaf breakdown by phosphorus in Neotropical streams? Freshwater Biology, 51(4), 618–633. https://doi.org/10.1111/j.1365-2427.2006.01515.x
Arriaga, Â. M. C., Machado, M. I. L., Craveiro, A. A., Pouliquen, Y. B. M., & Mesquita, A. G. (1997). Volatile constituents from leaves of guazuma ulmifolia lam. Journal of Essential Oil Research, 9(6), 705–706. https://doi.org/10.1080/10412905.1997.9700817
Biasi, C., Cogo, G. B., Hepp, L. U., & Santos, S. (2019). Shredders prefer soft and fungal-conditioned leaves, regardless of their initial chemical traits. Iheringia - Serie Zoologia, 109, 1–7. https://doi.org/10.1590/1678-4766e2019004
Boyero, L., Pearson, R. G., Gessner, M. O., Barmuta, L. A., Ferreira, V., Graça, M. A. S., Dudgeon, D., Boulton, A. J., Callisto, M., Chauvet, E., Helson, J. E., Bruder, A., Albariño, R. J., Yule, C. M., Arunachalam, M., Davies, J. N., Figueroa, R., Flecker, A. S., Ramírez, A., … West, D. C. (2011). A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecology Letters, 14(3), 289–294. https://doi.org/10.1111/j.1461-0248.2010.01578.x
Boyero, L., Pearson, R. G., Hui, C., Gessner, M. O., Pérez, J., Alexandrou, M. A., Graça, M. A. S., Cardinale, B. J., Albariño, R. J., Arunachalam, M., Barmuta, L. A., Boulton, A. J., Bruder, A., Callisto, M., Chauvet, E., Death, R. G., Dudgeon, D., Encalada, A. C., Ferreira, V., … Yule, C. M. (2016). Biotic and abiotic variables influencing plant litter breakdown in streams: a global study. Proceedings. Biological Sciences / The Royal Society, 283(1829), 449–468. https://doi.org/10.1098/rspb.2015.2664
Carvalho, E., & Uieda, V. (2010). Input of litter in deforested and forested areas of a tropical headstream. Brazilian Journal of Biology, 70(2), 283–288. https://doi.org/10.1590/s1519-69842010005000015
Chará, J., Pedraza, G., Giraldo, L., & Hincapié, D. (2007). Efecto de los corredores ribereños sobre el estado de quebradas en la zona ganadera. Agroforestería En Las Américas, 45, 72–78.
Christopher, F. J. (2014). Temporal Macroinvertebrate Community Structure in Leaf Packs from a Stream Dominated by Riparian Japanese Knotweed spp. Keystone Journal of Undergraduate Research, 2(1), 29–36.
Cory, R. M., Ward, C. P., Crump, B. C., & Kling, G. W. (2014). Sunlight controls water column processing of carbon in arctic fresh waters. Science, 345(6199), 925–928. https://doi.org/10.1126/science.1253119
Cuéllar-Cardozo, J. A., Nossa-silva, D., & Vallejo, M. I. (2022). Diversidad y estructura florística en zonas riparias de un remanente de bosque seco. Colombia Forestal, 25(2), 70–84.
DRYFLOR. (2016). Plant diversity patterns in neotropical dry forests and their conservation implications. Science, 353(6306), 1383–1387. https://doi.org/10.1126/science.aaf5080
Elosegi, A., & Sabater, S. (2009). Conceptos y tècnicas en ecologìa fluvial: Vol. XXXIII (Issue 2). Fundación BBVA. https://doi.org/10.1007/s13398-014-0173-7.2
Fajardo, A., Veneklaas, E., Obregón, S., & Beaulieu, N. (2000). Los Bosques de Galería: Guía para su apreciación y su conservación. Centro Internacional de Agricultura Tropical.
Ferreira, V., Encalada, A. C., & Graça, M. A. S. (2012). Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshwater Science, 31(3), 945–962. https://doi.org/10.1899/11-062.1
Follstad Shah, J. J., Kominoski, J. S., Ardón, M., Dodds, W. K., Gessner, M. O., Griffiths, N. A., Hawkins, C. P., Johnson, S. L., Lecerf, A., LeRoy, C. J., Manning, D. W. P., Rosemond, A. D., Sinsabaugh, R. L., Swan, C. M., Webster, J. R., & Zeglin, L. H. (2017). Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers. Global Change Biology, 23(8), 3064–3075. https://doi.org/10.1111/gcb.13609
Galeano Rendón, E., Monsalve Cortes, L. M., & Mancera Rodríguez, N. J. (2017). Evaluación de la calidad ecológica de quebradas andinas en la cuenca del Río Magdalena, Colombia. Revista U.D.C.A Actualidad & Divulgación Científica, 20(2). https://doi.org/10.31910/rudca.v20.n2.2017.398
Graça, M. A. S. (2001). The role of invertebrates on leaf litter decomposition in streams - A review. International Review of Hydrobiology, 86(4–5), 383–393. https://doi.org/10.1002/1522-2632(200107)86:4/5<383::AID-IROH383>3.0.CO;2-D
Graça, M. A. S., Ferreira, V., Canhoto, C., Encalada, A. C., Guerrero-Bolaño, F., Wantzen, K. M., & Boyero, L. (2015). A conceptual model of litter breakdown in low order streams. International Review of Hydrobiology, 100(1), 1–12. https://doi.org/10.1002/iroh.201401757
Granados-Sanchez, D., Hernández-Garcia, M. A., & Lopez-Rios, G. F. (2006). Las Zonas Ribereñas. Revista Chapingo Serie Ciencias Forestales y Del Ambiente, 12(1), 55–69.
Gregory, S. V., Swanson, F. J., McKee, W. A., & Cummins, K. W. (1991). An Ecosystem Perspective of Riparian Zones. BioScience, 41(8), 540–551. https://doi.org/10.2307/1311607
Griffith, A. (2010). SPSS For Dummies. In Wiley Publishing, Inc (2nd ed.). https://doi.org/10.1080/10436929908580238
Halffter, G. (1992). La diversidad Biológica de Iberoamérica (Primera). Intituto de ecología A.C. http://www.rds.org.co/aa/img_upload/cd3189bd6b9a1ea1575134c54f92a42c/Diversidad_1.PDF
Hui, D., & Jackson, R. B. (2009). Assessing interactive responses in litter decomposition in mixed species litter. Plant Soil, 314, 263–271. https://doi.org/10.1007/s11104-008-9726-x
Kibichii, S., Shivoga, W. A., Muchiri, M., & Miller, S. N. (2007). Macroinvertebrate assemblages along a land-use gradient in the upper River Njoro watershed of Lake Nakuru drainage basin, Kenya. Lakes and Reservoirs: Research and Management, 12(2), 107–117. https://doi.org/10.1111/j.1440-1770.2007.00323.x
Kumar, N. S., & Gurunani, S. G. (2019). Guazuma ulmifolia LAM: a review for future view. Journal of Medicinal Plants Studies, 7(2), 205–210. https://www.plantsjournal.com/archives/2019/vol7issue2/PartC/7-2-29-548.pdf
Leite-Rossi, L. A., Saito, V. S., Cunha-Santino, M. B., & Trivinho-Strixino, S. (2016). How does leaf litter chemistry influence its decomposition and colonization by shredder Chironomidae (Diptera) larvae in a tropical stream? Hydrobiologia, 771(1), 119–130. https://doi.org/10.1007/s10750-015-2626-1
Lemmon, P. E. (1956). A Spherical Densiometer For Estimating Forest Overstory Density. Forest Science, 2(4), 314–320. https://doi.org/10.1093/forestscience/2.4.314
Linares, J., & Fandiño, M. (2009). Estado Del Bosque Seco Tropical e Importancia Relativa De Su Flora Leñosa, Islas De La Vieja Providencia Y Santa Catalina, Colombia, Caribe Suroccidental. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 33(126), 1–15. http://www.accefyn.org.co/revista/Vol_33/126/5-16.pdf
Londoño, X., Camayo, G. C., Riaño, N., & López, Y. (2002). Characterization of the anatomy of Guadua angustifolia (Poaceae: Bambusoideae) culms. Bamboo Science and Culture, 16(1), 18–31. http://www.bamboo.org/publications/e107_files/downloads/ABSJournal-vol16.pdf#page=3
Lowrance, R., Altier, L. S., Newbold, J. D., Schnabel, R. R., Groffman, P. M., Denver, J. M., Correll, D. L., Gilliam, J. W., Robinson, J. L., Brinsfield, R. B., Staver, K. W., Lucas, W., & Todd, A. H. (1997). Water quality functions of riparian forest buffers in Chesapeake bay watersheds. Environmental Management, 21(5), 687–712. https://doi.org/10.1007/s002679900060
Mantel, S. K., Salas, M., & Dudgeon, D. (2004). Foodweb Structure in a Tropical Asian Forest Stream. Journal of North American Benthological Society, 23(4), 728–755. https://doi.org/10.1899/0887-3593(2004)023<0728:FSIATA>2.0.CO;2
Melo, O., Fernandez-Méndez, F., & Villanueva, B. (2017). Light habitat, structure, diversity and dynamic of the tropical dry forest. Colombia Forestal, 20(1), 19–30. https://doi.org/10.14483/udistrital.jour.colomb.for.2017.1.a02
Morales Noreña, N., & Sanchez Vallejo, L. J. (2008). Contribución al estudio fitoquímico de las hojas de Guadua angustifolia Kunth. Universidad Tecnologica de Pereira.
Moulton, T. P. (2006). Why the world is green, the waters are blue and foodwebs in small streams in the atlantic rainforest are predominantly driven by microalgae? Oecologia Brasiliensis, 10(01), 78–89. https://doi.org/10.4257/oeco.2006.1001.05
Moulton, T. P., & Wantzen, K. M. (2006). Conservation of tropical streams - special questions or conventional paradigms? Aquatic Conservation: Marine and Freshwater Ecosystems, 16, 659–663.
Munné, A., Prat, N., Solà, C., Bonada, N., & Rieradevall, M. (2003). A simple field method for assessing the ecological quality of riparian habitat in rivers and streams: QBR index. Aquatic Conservation: Marine and Freshwater Ecosystems, 13(2), 147–163. https://doi.org/10.1002/aqc.529
Neres-Lima, V., Machado-Silva, F., Baptista, D. F., Oliveira, R. B. S., Andrade, P. M., Oliveira, A. F., Sasada-Sato, C. Y., Silva-Junior, E. F., Feijó-Lima, R., Angelini, R., Camargo, P. B., & Moulton, T. P. (2017). Allochthonous and autochthonous carbon flows in food webs of tropical forest streams. Freshwater Biology, 62(6), 1012–1023. https://doi.org/10.1111/fwb.12921
Olascuaga-Vargas, D., Mercado-Gómez, J., & Sanchez-Montaño, L. R. (2016). Análisis de la vegetación sucesional en un fragmento de bosque seco tropical en Toluejo-Sucre (Colombia). Colombia Forestal, 19(1), 23–40. https://doi.org/10.14483/udistrital.jour.colomb.for.2016.1.a02
Ortega, M. E., Carranco, M. E., Mendoza, G., & Castro, G. (1998). Chemical composition of Guazuma ulmifolia Lam and its potential for ruminant feeding. Cuban Journal of Agricultural Science, 32(4), 383–386.
Ostrofsky, M. L. (1997). Relationship between chemical characteristics of autumn-shed leaves and aquatic processing rates. Journal of the North American Benthological Society, 16(4), 750–759. https://doi.org/10.2307/1468168
Pennington, R. T., Prado, D. E., & Pendry, C. a. (2000). Neotropical seasonally dry forests and Quaternary vegetation changes. Journal of Biogeography, 27(2), 261–273. https://doi.org/10.1046/j.1365-2699.2000.00397.x
Pizano, C., & Garcia, H. (2014). El Bosque Seco Tropical en Colombia. In Instituto de Investigacion Alexander von Humbolt (Primera Ed). Instituto Alexander von Humboldt (IAvH). https://doi.org/10.1017/CBO9781107415324.004
Posada, M. I., & Arroyave, M. del P. (2015). Análisis De Calidad Del Retiro Ribereño Para Diseño De Estrategias De Restauración Ecológica En El Río La Miel, Caldas, Colombia. Revista EIA, 12(23), 117–128. https://doi.org/10.24050/reia.v0i0.611
Rafi, M., Meitary, N., Septaningsih, D. A., & Bintang, M. (2020). Phytochemical profile and antioxidant activity of guazuma ulmifolia leaves extracts using different solvent extraction. Indonesian Journal of Pharmacy, 31(3), 171–180. https://doi.org/10.22146/ijp.598
Ramos, S. M., Graça, M. A. S., & Ferreira, V. (2021). A comparison of decomposition rates and biological colonization of leaf litter from tropical and temperate origins. Aquatic Ecology, 55(3), 925–940. https://doi.org/10.1007/s10452-021-09872-3
Rincón, J., Merchán, D., Sparer, A., Rojas, D., & Zarate, E. (2017). La descomposición de la hojarasca como herramienta para evaluar la integridad funcional de ríos altoandinos del sur del Ecuador. Revista de Biologia Tropical, 65(1), 321–334. https://doi.org/10.15517/rbt.v65i1.23233
Romero-Duque, L. P., Rosero-Toro, J. H., Fernández-Lucero, M., Simbaqueba-Gutierrez, A., & Pérez, C. (2019). Trees and shrubs of the tropical dry forest of the Magdalena river upper watershed (Colombia). Biodiversity Data Journal, 7, 1–21. https://doi.org/10.3897/BDJ.7.e36191
Sánchez-Echeverri, L. A., Aita, G., Robert, D., & Rodriguez Garcia, M. E. (2014). Correlation between chemical compounds and mechanical response in culms of two different ages of Guadua angustifolia Kunth. Madera y Bosques, 20(2), 87–94. https://doi.org/10.21829/myb.2014.202166
Santillán, C. A. I., & Quintana, S. G. C. (2020). Kunth Stability of antioxidant activity leaf extract of Guadua angustifolia Kunth Estabilidade da atividade antioxidante do extrato foliar de Guadua angustifolia Kunth. Revista de Investigación Cientifica DEKAMU AGROPEC, 1(1), 30–34.
Schimpf, D. J., & Danz, N. P. (1999). Light passage through leaf litter: Variation among northern hardwood trees. Agricultural and Forest Meteorology, 97(2), 103–111. https://doi.org/10.1016/S0168-1923(99)00064-7
Segura, G., Balvanera, P., Durán, E., & Pérez, A. (2003). Tree community structure and stem mortality along a water availability gradient in a Mexican tropical dry forest. Plant Ecology, 169(2), 259–271. https://doi.org/10.1023/A:1026029122077
Suárez, M. L., Vidal-Abarca, M. R., Del Mar Sánchez-Montoya, M., Alba-Tercedor, J., Álvarez, M., Avilés, J., Bonada, N., Casas, J., Jáimez-Cuéllar, P., Munné, A., Pardo, I., Prat, N., Rieradevall, M., Salinas, M. J., Toro, M., & Vivas, S. (2002). Las riberas de los ríos mediterráneos y su calidad: El uso del índice QBR. Limnetica, 21(3–4), 135–148.
Vargas, W. (2015). A brief description of the vegetation, with special emphasis on the intermediate pioneers of the dry forests of La Jagua, in the upper basin of the Magdalena River in Huila. Colombia Forestal, 18(1), 47–70. https://doi.org/10.14483/udistrital.jour.colomb.for.2015.1.a03
von Schiller, D., Acuña, V., Aristi, I., Arroita, M., Basaguren, A., Bellin, A., Boyero, L., Butturini, A., Ginebreda, A., Kalogiannih, E., Larrañaga, A., Majone, B., Martínez, A., Monroy, S., Muñoz, I., Paunović, M., Pereda, O., Petrovic, M., Pozo, J., … Elosegi, A. (2017). A synthesis of measures of river ecosystem functioning: criteria of use and sensitivity to environmental stressors. Science of the Total Environment, 596–597, 465–480.
Zhang, M., Cheng, X., Geng, Q., Shi, Z., Luo, Y., & Xu, X. (2019). Leaf litter traits predominantly control litter decomposition in streams worldwide. Global Ecology and Biogeography, 28(10), 1469–1486. https://doi.org/10.1111/geb.12966
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. La aceptación de manuscritos por parte de la revista implicará, además de su edición electrónica de acceso abierto bajo licencia Attribution-NonCommercial-ShareAlike 4.0 (CC BY NC SA), la inclusión y difusión del texto completo a través del repositorio institucional de la Universidad Nacional de Colombia y en todas aquellas bases de datos especializadas que el editor considere adecuadas para su indización con miras a incrementar la visibilidad de la revista.
2. Acta Biológica Colombiana permite a los autores archivar, descargar y compartir, la versión final publicada, así como las versiones pre-print y post-print incluyendo un encabezado con la referencia bibliográfica del articulo publicado.
3. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
4. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos institucionales, en su página web o en redes sociales cientificas como Academia, Researchgate; Mendelay) lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).