Publicado

2015-05-01

Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin

Disminución del estrés salino en plantas de Vicia faba L. a través de la activación de las semillas con melatonina

DOI:

https://doi.org/10.15446/abc.v20n2.43291

Palabras clave:

Faba bean, melatonin, salinity, indole acetic acid, minerals, protein patterns (en)
ácido indol acético, agua de mar, leguminosas, minerales, N-acetyl-5-methoxytryptamina, patrones de proteínas (es)

Autores/as

  • Mona Gergis Dawood National Research Centre

Melatonin is an environmentally friendly-molecule with a potent free radical scavenger and antioxidant capacity. Two pot experiments were conducted during two successive winter seasons (2011/2012 and 2012/2013) at the wire-house of the National Research Centre, Dokki, Cairo, Egypt to study the potentiality of melatonin (100 mM and 500 mM) in alleviating the harmful effect of diluted seawater at a relatively low and high concentrations (3.85 dS/m and 7.69 dS/m, respectively) on the performance of faba bean plants. The results revealed that irrigation of faba bean plants with diluted seawater reduced growth parameters (plant height, leaves number/plant, fresh and dry weights of plant), relative water content (RWC), photosynthetic pigments (chlorophylls a, b and carotenoids), indole acetic acid, total carbohydrate, K+,Ca+2, as well as the ratios of K+/Na+ and Ca+2/Na+. This was accompanied by significant increases in phenolic content, compatible solutes (total soluble carbohydrate, free amino acids, proline), Na+ and Clrelative to the control plants (untreated plants). On the other hand, melatonin treatments improved growth parameters, RWC, photosynthetic pigments, total carbohydrate, total phenolic content, indole acetic acid, K+,Ca+2 as well as K+/Na+ and Ca+2/Naratios, either in the plants irrigated with tap water or with diluted seawater, as compared with corresponding controls. Meanwhile, melatonin treatments reduced the levels of compatible solutes, as well as Na+ and Clcontents, relative to those of corresponding controls. Salinity stress and/ or melatonin treatments induced the production of new protein bands that did not occur in the control plants. Melatonin at 500 mM had a more pronounced effect in alleviating the adverse effects of the two salinity levels under study on the performance of faba bean plants than 100 mM melatonin.

La melatonina es una molécula ambientalmente amigable con una potente capacidad antioxidante y de trampa de radicales libres. Dos experimentos en materas fueron realizados en dos inviernos consecutivos (2011/2012 y 2012/2013) en instalaciones del Centro Nacional de Investigaciones, Dokki, Cairo, Egipto, para estudiar el potencial de la melatonina (100 mM and 500 mM) para disminuir los efectos nocivos del agua de mar diluida a concentraciones relativamente bajas y altas (3,85 dS/m and 7,69 dS/m, respectivamente). Los resultados mostraron que la irrigación de plantas de haba con agua de mar diluida reduce los parámetros de crecimiento (altura de la planta, número de hojas/planta, peso fresco y seco de la planta), el contenido relativo de agua (RWC), los pigmentos fotosintéticos (clorofilas a, b y carotenoides), el ácido indo lacético, los carbohidratos totales, K+, Ca+2, al igual que las relaciones K+/Na+ y Ca2+/Na+. Esto fue acompañado por un incremento significativo en el contenido de fenoles, solutos compatibles (carbohidratos solubles totales, aminoácidos libres, prolina), Na+ y Cl- en comparación con las plantas control (plantas no tratadas). De otro lado, los tratamientos con melatonina mejoraron los parámetros de crecimiento, RWC, los pigmentos fotosintéticos, carbohidratos totales, contenido fenólico total, ácido indo acético, K+,Ca+2 al igual que las relaciones K+/Na+ y Ca+2/Na, tanto en las plantas irrigadas con agua dulce de la llave como en las irrigadas con agua de mar diluida en comparación con los controles correspondientes. De otro lado, los tratamientos con melatonina redujeron los niveles de solutos compatibles, al igual que los contenidos de Na+ y Cl-, en comparación con los controles. El estrés por salinidad y/o los tratamientos con melatonina indujeron la producción de nuevas bandas de proteínas que no estuvieron presentes en las plantas control. El tratamiento de melatonina 500 mM tuvo un efecto más pronunciado que el tratamiento de 100 mM en disminuir los efectos adversos de los dos niveles de salinidad estudiados sobre el comportamiento de las plantas de haba.

Cómo citar

APA

Dawood, M. G. (2015). Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Biológica Colombiana, 20(2). https://doi.org/10.15446/abc.v20n2.43291

ACM

[1]
Dawood, M.G. 2015. Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Biológica Colombiana. 20, 2 (may 2015). DOI:https://doi.org/10.15446/abc.v20n2.43291.

ACS

(1)
Dawood, M. G. Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta biol. Colomb. 2015, 20.

ABNT

DAWOOD, M. G. Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Biológica Colombiana, [S. l.], v. 20, n. 2, 2015. DOI: 10.15446/abc.v20n2.43291. Disponível em: https://revistas.unal.edu.co/index.php/actabiol/article/view/43291. Acesso em: 16 abr. 2024.

Chicago

Dawood, Mona Gergis. 2015. «Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin». Acta Biológica Colombiana 20 (2). https://doi.org/10.15446/abc.v20n2.43291.

Harvard

Dawood, M. G. (2015) «Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin», Acta Biológica Colombiana, 20(2). doi: 10.15446/abc.v20n2.43291.

IEEE

[1]
M. G. Dawood, «Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin», Acta biol. Colomb., vol. 20, n.º 2, may 2015.

MLA

Dawood, M. G. «Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin». Acta Biológica Colombiana, vol. 20, n.º 2, mayo de 2015, doi:10.15446/abc.v20n2.43291.

Turabian

Dawood, Mona Gergis. «Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin». Acta Biológica Colombiana 20, no. 2 (mayo 1, 2015). Accedido abril 16, 2024. https://revistas.unal.edu.co/index.php/actabiol/article/view/43291.

Vancouver

1.
Dawood MG. Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta biol. Colomb. [Internet]. 1 de mayo de 2015 [citado 16 de abril de 2024];20(2). Disponible en: https://revistas.unal.edu.co/index.php/actabiol/article/view/43291

Descargar cita

CrossRef Cited-by

CrossRef citations40

1. Marino B. Arnao, Josefa Hernández-Ruiz. (2019). Melatonin as a Chemical Substance or as Phytomelatonin Rich-Extracts for Use as Plant Protector and/or Biostimulant in Accordance with EC Legislation. Agronomy, 9(10), p.570. https://doi.org/10.3390/agronomy9100570.

2. Piyush Mathur, Subhendu Pramanik. (2020). Neurotransmitters in Plant Signaling and Communication. Signaling and Communication in Plants. , p.213. https://doi.org/10.1007/978-3-030-54478-2_11.

3. Vicente Martinez, Manuel Nieves-Cordones, Maria Lopez-Delacalle, Reyes Rodenas, Teresa Mestre, Francisco Garcia-Sanchez, Francisco Rubio, Pedro Nortes, Ron Mittler, Rosa Rivero. (2018). Tolerance to Stress Combination in Tomato Plants: New Insights in the Protective Role of Melatonin. Molecules, 23(3), p.535. https://doi.org/10.3390/molecules23030535.

4. Sarah Bouzroud, Fatima Henkrar, Mouna Fahr, Abdelaziz Smouni. (2023). Salt stress responses and alleviation strategies in legumes: a review of the current knowledge. 3 Biotech, 13(8) https://doi.org/10.1007/s13205-023-03643-7.

5. Josefa Hernández-Ruiz, Marino Arnao. (2018). Relationship of Melatonin and Salicylic Acid in Biotic/Abiotic Plant Stress Responses. Agronomy, 8(4), p.33. https://doi.org/10.3390/agronomy8040033.

6. Elham Ahmed Kazerooni, Abdullah Mohammed Al-Sadi, Il-Doo Kim, Muhammad Imran, In-Jung Lee. (2021). Ampelopsin Confers Endurance and Rehabilitation Mechanisms in Glycine max cv. Sowonkong under Multiple Abiotic Stresses. International Journal of Molecular Sciences, 22(20), p.10943. https://doi.org/10.3390/ijms222010943.

7. Haoshuang Zhan, Xiaojun Nie, Ting Zhang, Shuang Li, Xiaoyu Wang, Xianghong Du, Wei Tong, Weining Song. (2019). Melatonin: A Small Molecule but Important for Salt Stress Tolerance in Plants. International Journal of Molecular Sciences, 20(3), p.709. https://doi.org/10.3390/ijms20030709.

8. Ruonan Yu, Tiantian Zuo, Pengfei Diao, Jiabin Fu, Yanyan Fan, Yue Wang, Qiqi Zhao, Xuesong Ma, Wenting Lu, Aoga Li, Ru Wang, Fang Yan, Li Pu, Yiding Niu, Hada Wuriyanghan. (2021). Melatonin Enhances Seed Germination and Seedling Growth of Medicago sativa Under Salinity via a Putative Melatonin Receptor MsPMTR1. Frontiers in Plant Science, 12 https://doi.org/10.3389/fpls.2021.702875.

9. Muhammad Nawaz, Xiukang Wang, Muhammad Hamzah Saleem, Muhammad Hafeez Ullah Khan, Javaria Afzal, Sajid Fiaz, Sajjad Ali, Hasnain Ishaq, Aamir Hamid Khan, Nagina Rehman, Shadab Shaukat, Shafaqat Ali. (2021). Deciphering Plantago ovata Forsk Leaf Extract Mediated Distinct Germination, Growth and Physio-Biochemical Improvements under Water Stress in Maize (Zea mays L.) at Early Growth Stage. Agronomy, 11(7), p.1404. https://doi.org/10.3390/agronomy11071404.

10. Khadiga Alharbi, Haifa Abdulaziz Sakit Alhaithloul, Aisha A. M. Alayafi, Wafa’a A. Al-Taisan, Suliman Mohammed Alghanem, Amina A. M. Al-Mushhin, Mona H. Soliman, Moodi Saham Alsubeie, Dan C. Vodnar, Romina Alina Marc. (2022). Impact of Plantago ovata Forsk leaf extract on morpho-physio-biochemical attributes, ions uptake and drought resistance of wheat (Triticum aestivum L.) seedlings. Frontiers in Plant Science, 13 https://doi.org/10.3389/fpls.2022.999170.

11. Imene Rajhi, Bechir Baccouri, Safa Khalifa, Fethi Barhoumi, Moez Amri, Haythem Mhadhbi. (2023). Life in Extreme Environments - Diversity, Adaptability and Valuable Resources of Bioactive Molecules. https://doi.org/10.5772/intechopen.106979.

12. Mozhgan Alinia, Seyed Abdolreza Kazemeini, Ali Dadkhodaie, Mozhgan Sepehri, Mohammad Pessarakli. (2021). Improving salt tolerance threshold in common bean cultivars using melatonin priming: a possible mission?. Journal of Plant Nutrition, 44(18), p.2691. https://doi.org/10.1080/01904167.2021.1927092.

13. Alam, Albalawi, Altalayan, Bakht, Ahanger, Raja, Ashraf, Ahmad. (2019). 24-Epibrassinolide (EBR) Confers Tolerance against NaCl Stress in Soybean Plants by Up-Regulating Antioxidant System, Ascorbate-Glutathione Cycle, and Glyoxalase System. Biomolecules, 9(11), p.640. https://doi.org/10.3390/biom9110640.

14. Kai-Chao Wu, Cheng-Mei Huang, Krishan K. Verma, Zhi-Nian Deng, Hai-Rong Huang, Tian Pang, Hui-Qing Cao, Hai-Bin Luo, Sheng-Li Jiang, Lin Xu. (2022). Transcriptomic responses of Saccharum spontaneum roots in response to polyethylene glycol – 6000 stimulated drought stress. Frontiers in Plant Science, 13 https://doi.org/10.3389/fpls.2022.992755.

15. Memoona Khalid, Hafiz Mamoon Rehman, Nisar Ahmed, Sehar Nawaz, Fozia Saleem, Shakeel Ahmad, Muhammad Uzair, Iqrar Ahmad Rana, Rana Muhammad Atif, Qamar U. Zaman, Hon-Ming Lam. (2022). Using Exogenous Melatonin, Glutathione, Proline, and Glycine Betaine Treatments to Combat Abiotic Stresses in Crops. International Journal of Molecular Sciences, 23(21), p.12913. https://doi.org/10.3390/ijms232112913.

16. Nasib Gul, Zia Ul Haq, Hina Ali, Fazal Munsif, Syed Shams ul Hassan, Simona Bungau. (2022). Melatonin Pretreatment Alleviated Inhibitory Effects of Drought Stress by Enhancing Anti-Oxidant Activities and Accumulation of Higher Proline and Plant Pigments and Improving Maize Productivity. Agronomy, 12(10), p.2398. https://doi.org/10.3390/agronomy12102398.

17. Ghalia S. H. Alnusairi, Yasser S. A. Mazrou, Sameer H. Qari, Amr A. Elkelish, Mona H. Soliman, Mohamed Eweis, Khaled Abdelaal, Gomaa Abd El-Samad, Mohamed F. M. Ibrahim, Nihal ElNahhas. (2021). Exogenous Nitric Oxide Reinforces Photosynthetic Efficiency, Osmolyte, Mineral Uptake, Antioxidant, Expression of Stress-Responsive Genes and Ameliorates the Effects of Salinity Stress in Wheat. Plants, 10(8), p.1693. https://doi.org/10.3390/plants10081693.

18. M. A. Salh, U. H. Mheidi. (2023). Effect of plant density stress and the foliar application of melatonin on antioxidant enzymes of Fennel (Foeniculum Vulgare). INTELLIGENT BIOTECHNOLOGIES OF NATURAL AND SYNTHETIC BIOLOGICALLY ACTIVE SUBSTANCES: XIV Narochanskie Readings. INTELLIGENT BIOTECHNOLOGIES OF NATURAL AND SYNTHETIC BIOLOGICALLY ACTIVE SUBSTANCES: XIV Narochanskie Readings. 2931, p.020025. https://doi.org/10.1063/5.0171446.

19. Yu.E. Kolupaev, I.V. Shakhov, O.I. Kokorev. (2023). Seed priming by donors of gasotransmittees and compounds with hormonal activity: growth and stress-protective effects. Fiziologia rastenij i genetika, 55(2), p.119. https://doi.org/10.15407/frg2023.02.119.

20. Ana Bernardina Menéndez, Pablo Ignacio Calzadilla, Pedro Alfonso Sansberro, Fabiana Daniela Espasandin, Ayelén Gazquez, César Daniel Bordenave, Santiago Javier Maiale, Andrés Alberto Rodríguez, Vanina Giselle Maguire, Maria Paula Campestre, Andrés Garriz, Franco Rubén Rossi, Fernando Matias Romero, Leandro Solmi, Maria Soraya Salloum, Mariela Inés Monteoliva, Julio Humberto Debat, Oscar Adolfo Ruiz. (2019). Polyamines and Legumes: Joint Stories of Stress, Nitrogen Fixation and Environment. Frontiers in Plant Science, 10 https://doi.org/10.3389/fpls.2019.01415.

21. Raziye Kul, Aslıhan Esringü, Esin Dadasoglu, Üstün Sahin, Metin Turan, Selda Örs, Melek Ekinci, Guleray Agar, Ertan Yildirim. (2019). Abiotic and Biotic Stress in Plants. https://doi.org/10.5772/intechopen.82590.

22. Arwa Abdulkreem AL-Huqail, Muhammad Hamzah Saleem, Baber Ali, Muhammad Azeem, Sahar Mumtaz, Ghulam Yasin, Romina Alina Marc, Shafaqat Ali, Honghong Wu. (2023). Efficacy of priming wheat (Triticum aestivum) seeds with a benzothiazine derivative to improve drought stress tolerance. Functional Plant Biology, 50(11), p.915. https://doi.org/10.1071/FP22140.

23. Mervat Shamoon Sadak, Amany Abd El-Mohsen Ramadan. (2021). Impact of melatonin and tryptophan on water stress tolerance in white lupine (Lupinus termis L.). Physiology and Molecular Biology of Plants, 27(3), p.469. https://doi.org/10.1007/s12298-021-00958-8.

24. Elham Ahmed Kazerooni, Sajeewa S. N. Maharachchikumbura, Abdullah Mohammed Al-Sadi, Umer Rashid, Il-Doo Kim, Sang-Mo Kang, In-Jung Lee. (2022). Effects of the Rhizosphere Fungus Cunninghamella bertholletiae on the Solanum lycopersicum Response to Diverse Abiotic Stresses. International Journal of Molecular Sciences, 23(16), p.8909. https://doi.org/10.3390/ijms23168909.

25. Sara Francisco Costa, Davide Martins, Monika Agacka-Mołdoch, Anna Czubacka, Susana de Sousa Araújo. (2018). Salinity Responses and Tolerance in Plants, Volume 1. , p.307. https://doi.org/10.1007/978-3-319-75671-4_12.

26. Magdalena Simlat, Agata Ptak, Edyta Skrzypek, Marzena Warchoł, Emilia Morańska, Ewa Piórkowska. (2018). Melatonin significantly influences seed germination and seedling growth ofStevia rebaudianaBertoni. PeerJ, 6, p.e5009. https://doi.org/10.7717/peerj.5009.

27. Akbar Aliverdi. (2023). Foliar-Applied Melatonin Mitigates Carryover Injury Caused by Premix Herbicide Lumax®537.5SE in Potato. Potato Research, https://doi.org/10.1007/s11540-023-09665-1.

28. Fereshteh Kamiab. (2020). Exogenous melatonin mitigates the salinity damages and improves the growth of pistachio under salinity stress. Journal of Plant Nutrition, 43(10), p.1468. https://doi.org/10.1080/01904167.2020.1730898.

29. Rahat Sharif, Chen Xie, Haiqiang Zhang, Marino Arnao, Muhammad Ali, Qasid Ali, Izhar Muhammad, Abdullah Shalmani, Muhammad Nawaz, Peng Chen, Yuhong Li. (2018). Melatonin and Its Effects on Plant Systems. Molecules, 23(9), p.2352. https://doi.org/10.3390/molecules23092352.

30. Sadiq Hussain, Farah Nisar, Bilquees Gul, Abdul Hameed. (2024). Seed priming with melatonin improved salinity tolerance of halophytes during early life-cycle stages. Plant Growth Regulation, https://doi.org/10.1007/s10725-023-01110-0.

31. Khadija Nawaz, Rimsha Chaudhary, Ayesha Sarwar, Bushra Ahmad, Asma Gul, Christophe Hano, Bilal Haider Abbasi, Sumaira Anjum. (2020). Melatonin as Master Regulator in Plant Growth, Development and Stress Alleviator for Sustainable Agricultural Production: Current Status and Future Perspectives. Sustainability, 13(1), p.294. https://doi.org/10.3390/su13010294.

32. Ibrahim A. A. Mohamed, Nesma Shalby, Ali M. A. El-Badri, Muhammad Hamzah Saleem, Mohammad Nauman Khan, Muhammad A. Nawaz, Meng Qin, Ramadan A. Agami, Jie Kuai, Bo Wang, Guangsheng Zhou. (2020). Stomata and Xylem Vessels Traits Improved by Melatonin Application Contribute to Enhancing Salt Tolerance and Fatty Acid Composition of Brassica napus L. Plants. Agronomy, 10(8), p.1186. https://doi.org/10.3390/agronomy10081186.

33. Hafiz Muhammad Rashad Javeed, Mazhar Ali, Milan Skalicky, Fahim Nawaz, Rafi Qamar, Atique ur Rehman, Maooz Faheem, Muhammad Mubeen, Muhammad Mohsin Iqbal, Muhammad Habib ur Rahman, Pavla Vachova, Marian Brestic, Alaa Baazeem, Ayman EL Sabagh. (2021). Lipoic Acid Combined with Melatonin Mitigates Oxidative Stress and Promotes Root Formation and Growth in Salt-Stressed Canola Seedlings (Brassica napus L.). Molecules, 26(11), p.3147. https://doi.org/10.3390/molecules26113147.

34. Kamila Motta de Castro, Diego Silva Batista, Tatiane Dulcineia Silva, Evandro Alexandre Fortini, Sérgio Heitor Sousa Felipe, Amanda Mendes Fernandes, Raysa Mayara de Jesus Sousa, Laís Stehling de Queiroz Nascimento, Victória Rabelo Campos, Lyderson Facio Viccini, Richard Michael Grazul, Wagner Campos Otoni. (2020). Salinity modulates growth, morphology, and essential oil profile in Lippia alba L. (Verbenaceae) grown in vitro. Plant Cell, Tissue and Organ Culture (PCTOC), 140(3), p.593. https://doi.org/10.1007/s11240-019-01755-8.

35. Elham Ahmed Kazerooni, Sajeewa S. N. Maharachchikumbura, Abdullah Mohammed Al-Sadi, Umer Rashid, Sang-Mo Kang, In-Jung Lee. (2022). Actinomucor elegans and Podospora bulbillosa Positively Improves Endurance to Water Deficit and Salinity Stresses in Tomato Plants. Journal of Fungi, 8(8), p.785. https://doi.org/10.3390/jof8080785.

36. Munazza Nazir, Muhammad Asad Ullah, Sadia Mumtaz, Aisha Siddiquah, Muzamil Shah, Samantha Drouet, Christophe Hano, Bilal Haider Abbasi. (2020). Interactive Effect of Melatonin and UV-C on Phenylpropanoid Metabolite Production and Antioxidant Potential in Callus Cultures of Purple Basil (Ocimum basilicum L. var purpurascens). Molecules, 25(5), p.1072. https://doi.org/10.3390/molecules25051072.

37. Chu Lei, Muthukumar Bagavathiannan, Huiyong Wang, Shaun M. Sharpe, Wenting Meng, Jialin Yu. (2021). Osmopriming with Polyethylene Glycol (PEG) for Abiotic Stress Tolerance in Germinating Crop Seeds: A Review. Agronomy, 11(11), p.2194. https://doi.org/10.3390/agronomy11112194.

38. Susmita Dey, Ashok Biswas, Yong Deng, Ziggiju Mesenbet Birhanie, Chen Wentao, Defang Li. (2023). Exogenous melatonin enhances low-temperature stress of jute seedlings through modulation of photosynthesis and antioxidant potential. Heliyon, 9(8), p.e19125. https://doi.org/10.1016/j.heliyon.2023.e19125.

39. Xiaojiang Li, Bingjun Yu, Yiqing Cui, Yifan Yin. (2017). Melatonin application confers enhanced salt tolerance by regulating Na+ and Cl− accumulation in rice. Plant Growth Regulation, 83(3), p.441. https://doi.org/10.1007/s10725-017-0310-3.

40. Mohamed Moustafa-Farag, Amr Elkelish, Mohamed Dafea, Mumtaz Khan, Marino B. Arnao, Magdi T. Abdelhamid, Aziz Abu El-Ezz, Abdlwareth Almoneafy, Ahmed Mahmoud, Mahrous Awad, Linfeng Li, Yanhong Wang, Mirza Hasanuzzaman, Shaoying Ai. (2020). Role of Melatonin in Plant Tolerance to Soil Stressors: Salinity, pH and Heavy Metals. Molecules, 25(22), p.5359. https://doi.org/10.3390/molecules25225359.

Dimensions

PlumX

Visitas a la página del resumen del artículo

824

Descargas

Los datos de descargas todavía no están disponibles.