Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin
Disminución del estrés salino en plantas de Vicia faba L. a través de la activación de las semillas con melatonina
DOI:
https://doi.org/10.15446/abc.v20n2.43291Palabras clave:
Faba bean, melatonin, salinity, indole acetic acid, minerals, protein patterns (en)ácido indol acético, agua de mar, leguminosas, minerales, N-acetyl-5-methoxytryptamina, patrones de proteínas (es)
Descargas
Melatonin is an environmentally friendly-molecule with a potent free radical scavenger and antioxidant capacity. Two pot experiments were conducted during two successive winter seasons (2011/2012 and 2012/2013) at the wire-house of the National Research Centre, Dokki, Cairo, Egypt to study the potentiality of melatonin (100 mM and 500 mM) in alleviating the harmful effect of diluted seawater at a relatively low and high concentrations (3.85 dS/m and 7.69 dS/m, respectively) on the performance of faba bean plants. The results revealed that irrigation of faba bean plants with diluted seawater reduced growth parameters (plant height, leaves number/plant, fresh and dry weights of plant), relative water content (RWC), photosynthetic pigments (chlorophylls a, b and carotenoids), indole acetic acid, total carbohydrate, K+,Ca+2, as well as the ratios of K+/Na+ and Ca+2/Na+. This was accompanied by significant increases in phenolic content, compatible solutes (total soluble carbohydrate, free amino acids, proline), Na+ and Cl- relative to the control plants (untreated plants). On the other hand, melatonin treatments improved growth parameters, RWC, photosynthetic pigments, total carbohydrate, total phenolic content, indole acetic acid, K+,Ca+2 as well as K+/Na+ and Ca+2/Na+ ratios, either in the plants irrigated with tap water or with diluted seawater, as compared with corresponding controls. Meanwhile, melatonin treatments reduced the levels of compatible solutes, as well as Na+ and Cl- contents, relative to those of corresponding controls. Salinity stress and/ or melatonin treatments induced the production of new protein bands that did not occur in the control plants. Melatonin at 500 mM had a more pronounced effect in alleviating the adverse effects of the two salinity levels under study on the performance of faba bean plants than 100 mM melatonin.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Piyush Mathur, Subhendu Pramanik. (2020). Neurotransmitters in Plant Signaling and Communication. Signaling and Communication in Plants. , p.213. https://doi.org/10.1007/978-3-030-54478-2_11.
2. Sarah Bouzroud, Fatima Henkrar, Mouna Fahr, Abdelaziz Smouni. (2023). Salt stress responses and alleviation strategies in legumes: a review of the current knowledge. 3 Biotech, 13(8) https://doi.org/10.1007/s13205-023-03643-7.
3. Ruonan Yu, Tiantian Zuo, Pengfei Diao, Jiabin Fu, Yanyan Fan, Yue Wang, Qiqi Zhao, Xuesong Ma, Wenting Lu, Aoga Li, Ru Wang, Fang Yan, Li Pu, Yiding Niu, Hada Wuriyanghan. (2021). Melatonin Enhances Seed Germination and Seedling Growth of Medicago sativa Under Salinity via a Putative Melatonin Receptor MsPMTR1. Frontiers in Plant Science, 12 https://doi.org/10.3389/fpls.2021.702875.
4. Rahmatollah Gholami, Narjes Fahadi Hoveizeh, Seyed Morteza Zahedi, Mohsen Padervand, Elmuez A. Dawi, Petronia Carillo. (2024). Nanostructure-assisted drought tolerance in olive trees (Olea europaea L.): the role of Fe2O3-graphitic carbon. Frontiers in Plant Science, 15 https://doi.org/10.3389/fpls.2024.1454619.
5. Khadiga Alharbi, Haifa Abdulaziz Sakit Alhaithloul, Aisha A. M. Alayafi, Wafa’a A. Al-Taisan, Suliman Mohammed Alghanem, Amina A. M. Al-Mushhin, Mona H. Soliman, Moodi Saham Alsubeie, Dan C. Vodnar, Romina Alina Marc. (2022). Impact of Plantago ovata Forsk leaf extract on morpho-physio-biochemical attributes, ions uptake and drought resistance of wheat (Triticum aestivum L.) seedlings. Frontiers in Plant Science, 13 https://doi.org/10.3389/fpls.2022.999170.
6. Imene Rajhi, Bechir Baccouri, Safa Khalifa, Fethi Barhoumi, Moez Amri, Haythem Mhadhbi. (2023). Life in Extreme Environments - Diversity, Adaptability and Valuable Resources of Bioactive Molecules. https://doi.org/10.5772/intechopen.106979.
7. Mozhgan Alinia, Seyed Abdolreza Kazemeini, Ali Dadkhodaie, Mozhgan Sepehri, Mohammad Pessarakli. (2021). Improving salt tolerance threshold in common bean cultivars using melatonin priming: a possible mission?. Journal of Plant Nutrition, 44(18), p.2691. https://doi.org/10.1080/01904167.2021.1927092.
8. Sadiq Hussain, Aysha Rasheed, Farah Nisar, Bilquees Gul, Abdul Hameed. (2025). Exogenous Priming and Engineering of Plant Metabolic and Regulatory Genes. , p.137. https://doi.org/10.1016/B978-0-443-13490-6.00010-2.
9. Pravej Alam, Thamer H. Albalawi, Fahad H. Altalayan, Md Afroz Bakht, Mohammad Abass Ahanger, Vaseem Raja, Muhammad Ashraf, Parvaiz Ahmad. (2019). 24-Epibrassinolide (EBR) Confers Tolerance against NaCl Stress in Soybean Plants by Up-Regulating Antioxidant System, Ascorbate-Glutathione Cycle, and Glyoxalase System. Biomolecules, 9(11), p.640. https://doi.org/10.3390/biom9110640.
10. Kai-Chao Wu, Cheng-Mei Huang, Krishan K. Verma, Zhi-Nian Deng, Hai-Rong Huang, Tian Pang, Hui-Qing Cao, Hai-Bin Luo, Sheng-Li Jiang, Lin Xu. (2022). Transcriptomic responses of Saccharum spontaneum roots in response to polyethylene glycol – 6000 stimulated drought stress. Frontiers in Plant Science, 13 https://doi.org/10.3389/fpls.2022.992755.
11. Atefeh Banisharif, Tayebeh Radjabian, Azra Saboora. (2025). Impact of Exogenous Melatonin on Physiological and Phytochemical Characteristics of Salvia verticillata L. Shoots: An In Vitro Approach. Journal of Plant Growth Regulation, https://doi.org/10.1007/s00344-025-11638-2.
12. Faouzi Horchani, Amal Bouallegue, Ahmed Namsi, Zouhaier Abbes. (2024). Simultaneous Application of Ascorbic Acid and Proline as a Smart Approach to Mitigate the Adverse Effects of Salt Stress in Wheat (Triticum aestivum). Biology Bulletin, 51(5), p.1346. https://doi.org/10.1134/S1062359024607171.
13. M. A. Salh, U. H. Mheidi. (2023). Effect of plant density stress and the foliar application of melatonin on antioxidant enzymes of Fennel (Foeniculum Vulgare). INTELLIGENT BIOTECHNOLOGIES OF NATURAL AND SYNTHETIC BIOLOGICALLY ACTIVE SUBSTANCES: XIV Narochanskie Readings. INTELLIGENT BIOTECHNOLOGIES OF NATURAL AND SYNTHETIC BIOLOGICALLY ACTIVE SUBSTANCES: XIV Narochanskie Readings. 2931, p.020025. https://doi.org/10.1063/5.0171446.
14. Yu.E. Kolupaev, I.V. Shakhov, O.I. Kokorev. (2023). Seed priming by donors of gasotransmittees and compounds with hormonal activity: growth and stress-protective effects. Fiziologia rastenij i genetika, 55(2), p.119. https://doi.org/10.15407/frg2023.02.119.
15. Ana Bernardina Menéndez, Pablo Ignacio Calzadilla, Pedro Alfonso Sansberro, Fabiana Daniela Espasandin, Ayelén Gazquez, César Daniel Bordenave, Santiago Javier Maiale, Andrés Alberto Rodríguez, Vanina Giselle Maguire, Maria Paula Campestre, Andrés Garriz, Franco Rubén Rossi, Fernando Matias Romero, Leandro Solmi, Maria Soraya Salloum, Mariela Inés Monteoliva, Julio Humberto Debat, Oscar Adolfo Ruiz. (2019). Polyamines and Legumes: Joint Stories of Stress, Nitrogen Fixation and Environment. Frontiers in Plant Science, 10 https://doi.org/10.3389/fpls.2019.01415.
16. Raziye Kul, Aslıhan Esringü, Esin Dadasoglu, Üstün Sahin, Metin Turan, Selda Örs, Melek Ekinci, Guleray Agar, Ertan Yildirim. (2019). Abiotic and Biotic Stress in Plants. https://doi.org/10.5772/intechopen.82590.
17. Arwa Abdulkreem AL-Huqail, Muhammad Hamzah Saleem, Baber Ali, Muhammad Azeem, Sahar Mumtaz, Ghulam Yasin, Romina Alina Marc, Shafaqat Ali, Honghong Wu. (2023). Efficacy of priming wheat (Triticum aestivum) seeds with a benzothiazine derivative to improve drought stress tolerance. Functional Plant Biology, 50(11), p.915. https://doi.org/10.1071/FP22140.
18. Mervat Shamoon Sadak, Amany Abd El-Mohsen Ramadan. (2021). Impact of melatonin and tryptophan on water stress tolerance in white lupine (Lupinus termis L.). Physiology and Molecular Biology of Plants, 27(3), p.469. https://doi.org/10.1007/s12298-021-00958-8.
19. Sara Francisco Costa, Davide Martins, Monika Agacka-Mołdoch, Anna Czubacka, Susana de Sousa Araújo. (2018). Salinity Responses and Tolerance in Plants, Volume 1. , p.307. https://doi.org/10.1007/978-3-319-75671-4_12.
20. Magdalena Simlat, Agata Ptak, Edyta Skrzypek, Marzena Warchoł, Emilia Morańska, Ewa Piórkowska. (2018). Melatonin significantly influences seed germination and seedling growth ofStevia rebaudianaBertoni. PeerJ, 6, p.e5009. https://doi.org/10.7717/peerj.5009.
21. Akbar Aliverdi. (2024). Foliar-Applied Melatonin Mitigates Carryover Injury Caused by Premix Herbicide Lumax®537.5SE in Potato. Potato Research, 67(2), p.733. https://doi.org/10.1007/s11540-023-09665-1.
22. Fereshteh Kamiab. (2020). Exogenous melatonin mitigates the salinity damages and improves the growth of pistachio under salinity stress. Journal of Plant Nutrition, 43(10), p.1468. https://doi.org/10.1080/01904167.2020.1730898.
23. Sadiq Hussain, Farah Nisar, Bilquees Gul, Abdul Hameed. (2024). Seed priming with melatonin improved salinity tolerance of halophytes during early life-cycle stages. Plant Growth Regulation, 103(2), p.351. https://doi.org/10.1007/s10725-023-01110-0.
24. Kamila Motta de Castro, Diego Silva Batista, Tatiane Dulcineia Silva, Evandro Alexandre Fortini, Sérgio Heitor Sousa Felipe, Amanda Mendes Fernandes, Raysa Mayara de Jesus Sousa, Laís Stehling de Queiroz Nascimento, Victória Rabelo Campos, Lyderson Facio Viccini, Richard Michael Grazul, Wagner Campos Otoni. (2020). Salinity modulates growth, morphology, and essential oil profile in Lippia alba L. (Verbenaceae) grown in vitro. Plant Cell, Tissue and Organ Culture (PCTOC), 140(3), p.593. https://doi.org/10.1007/s11240-019-01755-8.
25. Susmita Dey, Ashok Biswas, Yong Deng, Ziggiju Mesenbet Birhanie, Chen Wentao, Defang Li. (2023). Exogenous melatonin enhances low-temperature stress of jute seedlings through modulation of photosynthesis and antioxidant potential. Heliyon, 9(8), p.e19125. https://doi.org/10.1016/j.heliyon.2023.e19125.
26. Xiaojiang Li, Bingjun Yu, Yiqing Cui, Yifan Yin. (2017). Melatonin application confers enhanced salt tolerance by regulating Na+ and Cl− accumulation in rice. Plant Growth Regulation, 83(3), p.441. https://doi.org/10.1007/s10725-017-0310-3.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2015 Acta Biológica Colombiana

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
1. La aceptación de manuscritos por parte de la revista implicará, además de su edición electrónica de acceso abierto bajo licencia Attribution-NonCommercial-ShareAlike 4.0 (CC BY NC SA), la inclusión y difusión del texto completo a través del repositorio institucional de la Universidad Nacional de Colombia y en todas aquellas bases de datos especializadas que el editor considere adecuadas para su indización con miras a incrementar la visibilidad de la revista.
2. Acta Biológica Colombiana permite a los autores archivar, descargar y compartir, la versión final publicada, así como las versiones pre-print y post-print incluyendo un encabezado con la referencia bibliográfica del articulo publicado.
3. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
4. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos institucionales, en su página web o en redes sociales cientificas como Academia, Researchgate; Mendelay) lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).