Publicado

2020-05-01

ANTIFUNGAL ACTIVITY SCREENING OF ANTARCTIC ACTINOBACTERIA AGAINST PHYTOPATHOGENIC FUNGI

Evaluación de la actividad antifúngica de actinobacterias antárticas contra hongos fitopatógenos

DOI:

https://doi.org/10.15446/abc.v25n2.76405

Palabras clave:

Antagonism, Antarctic bacteria, antifungal, extremophile, plant pathogen (en)
Antagonismo, antifúngico, bacteria antártica, extremófilos, patógeno de plantas (es)

Descargas

Autores/as

  • Andrés Santos Laboratorio de Biología Molecular Aplicada, Centro de Excelencia en Medicina Traslacional, Universidad de La Frontera, Avenida Alemania 0458, 4810296 Temuco, ChileNúcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145, 481123 Temuco, Chile. https://orcid.org/0000-0001-7576-0504
  • Kattia Núñez-Montero Laboratorio de Biología Molecular Aplicada, Centro de Excelencia en Medicina Traslacional, Universidad de La Frontera, Avenida Alemania 0458, 4810296 Temuco, ChileNúcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145, 481123 Temuco, Chile. https://orcid.org/0000-0002-8629-5107
  • Claudio Lamilla Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente. Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, 481123 Temuco, Chile.Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145, 481123 Temuco, Chile. https://orcid.org/0000-0003-0490-6945
  • Mónica Pavez Laboratorio de Biología Molecular Aplicada, Centro de Excelencia en Medicina Traslacional, Universidad de La Frontera, Avenida Alemania 0458, 4810296 Temuco, ChileNúcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145, 481123 Temuco, Chile. https://orcid.org/0000-0003-4389-2275
  • Damián Quezada-Solís Laboratorio de Biología Molecular Aplicada, Universidad de La Frontera, Avenida Alemania 0458, 4810296 Temuco, Chile https://orcid.org/0000-0001-5254-4307
  • Leticia Barrientos Laboratorio de Biología Molecular Aplicada, Centro de Excelencia en Medicina Traslacional, Universidad de La Frontera, Avenida Alemania 0458, 4810296 Temuco, ChileNúcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145, 481123 Temuco, Chile. https://orcid.org/0000-0002-5344-054X

The extreme weather conditions in the Antarctic have exerted selective pressures favoring differential features in bacteria to survive this untapped environment (i.e., antibiotic molecules). Notably, higher chances of antibiotic discovery from extremophiles have been proposed recently. Althoughnew organic and environmentally friendly sources for helping in the control of plant pathogenic fungi are necessary, the information about anti-phytopathogenic applications of extremophile microorganisms from untapped environments is limited. In this study, we determined the antifungal effect of actinobacterial strains isolated from Antarctic soils and sediments. Co-culture inhibition assays and Minimum Inhibitory Concentration (MIC) determination revealed that all Antarctic strains (x28) can inhibit the growth of at least one phytopathogenic fungi including Fusarium oxysporum,Rhizoctonia solani,Botrytissp. and Phytophthora infestans. Additionally, new novel antagonistic relationships are reported. Our work establishes a precedent on Antarctic actinobacteria strains with the capacity to produce antifungal compounds, and its potential for developing new fungicides or biocontrol agents solving current agriculture problems.

Las condiciones climáticas extremas en la Antártica han ejercido presiones selectivas en las bacterias, de forma que éstas poseen características diferenciales (ej. moléculas antibióticas) que les permiten sobrevivir a este entorno poco explorado. Recientemente se ha propuesto que pueden existir mayores posibilidades para el descubrimiento de antibióticos a partir de extremófilos. A pesar de que son necesarias nuevas fuentes orgánicas y amigables con el medio ambiente para controlar los hongos patógenos en plantas, la información sobre las aplicaciones anti-fitopatogénicas de microorganismos extremófilos, de ambientes poco explorados, es limitada. En este estudio, se determinó el efecto antifúngico de actinobacterias aisladas de suelos y sedimentos antárticos. Mediante ensayos de inhibición en co-cultivo y determinación de la concentración mínima inhibitoria (CIM) se reveló que todas las cepas antárticas (x28) tienen la capacidad de inhibir el crecimiento de al menos un hongo fitopatógeno, incluyendo Fusarium oxysporum,Rhizoctonia solani,Botrytissp. y Phytophthora infestans. Adicionalmente, se reportan nuevas relaciones antagónicas. Nuestro trabajo establece un precedente sobre cepas de actinobacterias antárticas con capacidad para la producción de compuestos antifúngicos y su potencial para el desarrollo de nuevos fungicidas o agentes de control biológico con el fin de resolver problemas actuales de la agricultura.

Referencias

Cary SC, McDonald IR, Barrett JE, Cowan DA. On the rocks: The microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol. 2010;8:129–38. Doi: https://doi.org/10.1038/nrmicro2281.

Chiba H, Agematu H, Kaneto R, Terasawa T, Sakai K, Dobashi K, Yoshioka T. Rhodopeptins ( Mer-N1033 ), Novel Cyclic Tetrapeptides Activity from Rhodococcus sp. with Antifungal. J Antibiot . 1999;52(8):695–699.

Convey P, Stevens MI, Hodgson DA, Smellie JL, Hillenbrand CD, Barnes DKA, et al. Exploring biological constraints on the glacial history of Antarctica. Quat Sci Rev. 2009;28(27-28):3035–3048. Doi: https://doi.org/10.1016/j.quascirev.2009.08.015

Costa FG, Zucchi TD, De Melo IS. Biological control of phytopathogenic fungi by endophytic actinomycetes isolated from maize (Zea mays L.). Brazilian Arch Biol Technol. 2013;56(6):948–955. Doi: https://doi.org/10.1590/S1516-89132013000600009

Fenice M, Gooday GW. Mycoparasitic actions against fungi and oomycetes by a strain (CCFEE 5003) of the fungus Lecanicillium muscarium isolated in Continental Antarctica. Ann Microbiol. 2006;56:1–6. Doi: https://doi.org/10.1007/BF03174961

Lo Giudice A, Bruni V, Michaud L. Characterization of Antarctic psychrotrophic bacteria with antibacterial activities against terrestrial microorganisms. J Basic Microbiol. 2007;47(6):496–505. Doi: https://doi.org/10.1002/jobm.200700227

Iwatsuki M, Uchida R, Takakusagi Y, Matsumoto A, Jiang CL, Takahashi Y, et al. Lariatins, novel anti-mycobacterial peptides with a lasso structure, produced by Rhodococcus jostii K01-B0171. J Antibiot. 2007;60:367–363. Doi: https://doi.org/10.1038/ja.2007.48

Jackson SA, Crossman L, Almeida EL, Margassery LM, Kennedy J, Dobson ADW. Diverse and abundant secondary metabolism biosynthetic gene clusters in the genomes of marine sponge derived Streptomyces spp. Isolates. Mar Drugs. 2018;16(2):67. Doi: https://doi.org/10.3390/md16020067

Lamilla C, Pavez M, Santos A, Hermosilla A, Llanquinao V, Barrientos L. Bioprospecting for extracellular enzymes from culturable Actinobacteria from the South Shetland Islands, Antarctica. Polar Biol. 2017;40(3):719–726. Doi: https://doi.org/10.1007/s00300-016-1977-z

Law JWF, Ser HL, Khan TM, Chuah LH, Pusparajah P, Chan KG, et al. The potential of streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Front Microbiol. 2017;8. Doi: https://doi.org/10.3389/fmicb.2017.00003

Legrand F, Picot A, Cobo-Díaz JF, Chen W, Le Floch G. Challenges facing the biological control strategies for the management of Fusarium Head Blight of cereals caused by F. graminearum. Biol Control. 2017;113:26–38. Doi: https://doi.org/10.1016/j.biocontrol.2017.06.011

Manivasagan P, Kang KH, Sivakumar K, Li-Chan ECY, Oh HM, Kim SK. Marine actinobacteria: An important source of bioactive natural products. Environ Toxicol Pharmacol. 2014;38(1):172–188. Doi: https://doi.org/10.1016/j.etap.2014.05.014

Núñez-Montero K, Barrientos L. Advances in antarctic research for antimicrobial discovery: A Comprehensive narrative review of bacteria from antarctic environments as potential sources of novel antibiotic compounds against human pathogens and microorganisms of industrial importance. Antibiotics. 2018;7(4):90. Doi: https://doi.org/10.3390/antibiotics7040090

Núñez-Montero K, Lamilla C, Abanto M, Maruyama F, Jorquera MA, Santos A, Martinez-Urtaza J, Barrientos L. Antarctic Streptomyces fildesensis So13.3 strain as a promising source for antimicrobials discovery. Sci Rep. 2019;9:7488. Doi: https://doi.org/10.1038/s41598-019-43960-7

O’Brien A, Sharp R, Russell NJ, Roller S. Antarctic bacteria inhibit growth of food-borne microorganisms at low temperatures. FEMS Microbiol Ecol. 2004;48(2):157–167. Doi: https://doi.org/10.1016/j.femsec.2004.01.001

Park HJ, Kim D, Kim IH, Lee CE, Kim IC, Kim JY, et al. Characteristics of cold-adaptive endochitinase from Antarctic bacterium Sanguibacter antarcticus KOPRI 21702. Enzyme Microb Technol. 2009;45(5):391–396. Doi: https://doi.org/10.1016/j.enzmictec.2009.07.002

Pearce DA, Newsham KK, Thorne MAS, Calvo-Bado L, Krsek M, Laskaris P, et al. Metagenomic Analysis of a Southern Maritime Antarctic Soil. Front Microbiol. 2012;3:403. Doi: https://doi.org/10.3389/fmicb.2012.00403

Plesken C, Weber RWS, Rupp S, Leroch M, Hahn M. Botrytis pseudocinerea is a significant pathogen of several crop plants but susceptible to displacement by fungicide-resistant B. cinerea strains. Appl Environ Microbiol. 2015;81:7048–7056. Doi: https://doi.org/10.1128/AEM.01719-15

Quecine MC, Araujo WL, Marcon J, Gai CS, Azevedo JL, Pizzirani-Kleiner AA. Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Lett Appl Microbiol. 2008;47(6):486–491. Doi: https://doi.org/10.1111/j.1472-765X.2008.02428.x

Ramli ANM, Mahadi NM, Rabu A, Murad AMA, Bakar FDA, Illias RM. Molecular cloning, expression and biochemical characterisation of a cold-adapted novel recombinant chitinase from Glaciozyma antarctica PI12. Microb Cell Fact. 2011;10:94. Doi: https://doi.org/10.1186/1475-2859-10-94

Rashad YM, Al-Askar AA, Ghoneem KM, Saber WIA, Hafez EE. Chitinolytic Streptomyces griseorubens E44G enhances the biocontrol efficacy against Fusarium wilt disease of tomato. Phytoparasitica. 2017;45(2):227–237. Doi: https://doi.org/10.1007/s12600-017-0580-3

Rosen PC, Seyedsayamdost MR. Though Much Is Taken, Much Abides: Finding New Antibiotics Using Old Ones. Biochemistry. 2017;56(37):4925–4926. Doi: https://doi.org/10.1021/acs.biochem.7b00782

Sangorrín MP, Lopes CA, Vero S, Wisniewski M. Cold-adapted yeasts as biocontrol agents: Biodiversity, adaptation strategies and biocontrol potential. In: Buzzini P, Margesin R, editors. Cold-adapted YeastsBiodiversity, Adapt. Strateg. Biotechnol. Significance, Berlin, Heidelberg: Springer; 2014. Doi: https://doi.org/10.1007/978-3-642-39681-6_20

Shuping DSS, Eloff JN. The use of plants to protect plants and food against fungal pathogens: A review. African J Tradit Complement Altern Med AJTCAM. 2017;14(4):120–127. Doi: https://doi.org/10.21010/ajtcam.v14i4.14

Son SW, Kim HY, Choi GJ, Lim HK, Jang KS, Lee SO, et al. Bikaverin and fusaric acid from Fusarium oxysporum show antioomycete activity against Phytophthora infestans. J Appl Microbiol. 2008;104(3):692–698. Doi: https://doi.org/10.1111/j.1365-2672.2007.03581.x

Vero S, Garmendia G, González MB, Bentancur O, Wisniewski M. Evaluation of yeasts obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of apple (Malus × domestica). FEMS Yeast Res. 2013;13(2):189–199. Doi: https://doi.org/10.1111/1567-1364.12021

Weinstein MP, Zimmerl BL, Cockerill FR, Wiker MA, Alder J, Dudley MN, et al. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Clin Lab Stand Inst. 2012;11:1–91. Wibberg D, Andersson L, Tzelepis G, Rupp O, Blom J, Jelonek L, et al. Genome analysis of the sugar beet pathogen Rhizoctonia solani AG2-2IIIB revealed high numbers in secreted proteins and cell wall degrading enzymes. BMC Genomics. 2016;17:245. Doi: https://doi.org/10.1186/s12864-016-2561-1

Wietz M, Mansson M, Gotfredsen CH, Larsen TO, Gram L. Antibacterial compounds from marine Vibrionaceae isolated on a global expedition. Mar Drugs. 2010;8(12):2946–2960. Doi: https://doi.org/10.3390/md8122946

Yellamanda B, Vijayalakshmi M, Kavitha A, Reddy DK, Venkateswarlu Y. Extraction and bioactive profile of the compounds produced by Rhodococcus sp. VLD-10. 3 Biotech. 2016;6:261. Doi: https://doi.org/10.1007/s13205-016-0576-6

Cómo citar

APA

Santos, A., Núñez-Montero, K., Lamilla, C., Pavez, M., Quezada-Solís, D. y Barrientos, L. (2020). ANTIFUNGAL ACTIVITY SCREENING OF ANTARCTIC ACTINOBACTERIA AGAINST PHYTOPATHOGENIC FUNGI. Acta Biológica Colombiana, 25(2), 353–358. https://doi.org/10.15446/abc.v25n2.76405

ACM

[1]
Santos, A., Núñez-Montero, K., Lamilla, C., Pavez, M., Quezada-Solís, D. y Barrientos, L. 2020. ANTIFUNGAL ACTIVITY SCREENING OF ANTARCTIC ACTINOBACTERIA AGAINST PHYTOPATHOGENIC FUNGI. Acta Biológica Colombiana. 25, 2 (may 2020), 353–358. DOI:https://doi.org/10.15446/abc.v25n2.76405.

ACS

(1)
Santos, A.; Núñez-Montero, K.; Lamilla, C.; Pavez, M.; Quezada-Solís, D.; Barrientos, L. ANTIFUNGAL ACTIVITY SCREENING OF ANTARCTIC ACTINOBACTERIA AGAINST PHYTOPATHOGENIC FUNGI. Acta biol. Colomb. 2020, 25, 353-358.

ABNT

SANTOS, A.; NÚÑEZ-MONTERO, K.; LAMILLA, C.; PAVEZ, M.; QUEZADA-SOLÍS, D.; BARRIENTOS, L. ANTIFUNGAL ACTIVITY SCREENING OF ANTARCTIC ACTINOBACTERIA AGAINST PHYTOPATHOGENIC FUNGI. Acta Biológica Colombiana, [S. l.], v. 25, n. 2, p. 353–358, 2020. DOI: 10.15446/abc.v25n2.76405. Disponível em: https://revistas.unal.edu.co/index.php/actabiol/article/view/76405. Acesso em: 19 abr. 2024.

Chicago

Santos, Andrés, Kattia Núñez-Montero, Claudio Lamilla, Mónica Pavez, Damián Quezada-Solís, y Leticia Barrientos. 2020. «ANTIFUNGAL ACTIVITY SCREENING OF ANTARCTIC ACTINOBACTERIA AGAINST PHYTOPATHOGENIC FUNGI». Acta Biológica Colombiana 25 (2):353-58. https://doi.org/10.15446/abc.v25n2.76405.

Harvard

Santos, A., Núñez-Montero, K., Lamilla, C., Pavez, M., Quezada-Solís, D. y Barrientos, L. (2020) «ANTIFUNGAL ACTIVITY SCREENING OF ANTARCTIC ACTINOBACTERIA AGAINST PHYTOPATHOGENIC FUNGI», Acta Biológica Colombiana, 25(2), pp. 353–358. doi: 10.15446/abc.v25n2.76405.

IEEE

[1]
A. Santos, K. Núñez-Montero, C. Lamilla, M. Pavez, D. Quezada-Solís, y L. Barrientos, «ANTIFUNGAL ACTIVITY SCREENING OF ANTARCTIC ACTINOBACTERIA AGAINST PHYTOPATHOGENIC FUNGI», Acta biol. Colomb., vol. 25, n.º 2, pp. 353–358, may 2020.

MLA

Santos, A., K. Núñez-Montero, C. Lamilla, M. Pavez, D. Quezada-Solís, y L. Barrientos. «ANTIFUNGAL ACTIVITY SCREENING OF ANTARCTIC ACTINOBACTERIA AGAINST PHYTOPATHOGENIC FUNGI». Acta Biológica Colombiana, vol. 25, n.º 2, mayo de 2020, pp. 353-8, doi:10.15446/abc.v25n2.76405.

Turabian

Santos, Andrés, Kattia Núñez-Montero, Claudio Lamilla, Mónica Pavez, Damián Quezada-Solís, y Leticia Barrientos. «ANTIFUNGAL ACTIVITY SCREENING OF ANTARCTIC ACTINOBACTERIA AGAINST PHYTOPATHOGENIC FUNGI». Acta Biológica Colombiana 25, no. 2 (mayo 1, 2020): 353–358. Accedido abril 19, 2024. https://revistas.unal.edu.co/index.php/actabiol/article/view/76405.

Vancouver

1.
Santos A, Núñez-Montero K, Lamilla C, Pavez M, Quezada-Solís D, Barrientos L. ANTIFUNGAL ACTIVITY SCREENING OF ANTARCTIC ACTINOBACTERIA AGAINST PHYTOPATHOGENIC FUNGI. Acta biol. Colomb. [Internet]. 1 de mayo de 2020 [citado 19 de abril de 2024];25(2):353-8. Disponible en: https://revistas.unal.edu.co/index.php/actabiol/article/view/76405

Descargar cita

CrossRef Cited-by

CrossRef citations6

1. Adrian David Hauser. (2023). Engineering prototype based on the study of extremophiles. Athenea, , p.14. https://doi.org/10.47460/athenea.v4i12.54.

2. Diana Elizabeth Rios-Muñiz, Zahaed Evangelista-Martínez. (2022). Antifungal activity of Streptomyces sp. CACIS-2.15CA, as a potential biocontrol agent, against some soil-borne fungi. Egyptian Journal of Biological Pest Control, 32(1) https://doi.org/10.1186/s41938-022-00630-7.

3. Talwinder Kaur, Kanika Khanna, Sonika Sharma, Rajesh K. Manhas. (2023). Mechanistic insights into the role of actinobacteria as potential biocontrol candidates against fungal phytopathogens. Journal of Basic Microbiology, 63(11), p.1196. https://doi.org/10.1002/jobm.202300027.

4. Serine Ramlawi, Sawsan Abusharkh, Alexa Carroll, David R. McMullin, Tyler J. Avis. (2021). Biological and chemical characterization of antimicrobial activity in Arthrobacter spp. isolated from disease‐suppressive compost. Journal of Basic Microbiology, 61(8), p.745. https://doi.org/10.1002/jobm.202100213.

5. Meriam Bouri, Samina Mehnaz, Fikrettin Şahin. (2022). Secondary Metabolites and Volatiles of PGPR in Plant-Growth Promotion. , p.249. https://doi.org/10.1007/978-3-031-07559-9_12.

6. Theresa Kuhl, Soumitra Paul Chowdhury, Jenny Uhl, Michael Rothballer. (2021). Genome-Based Characterization of Plant-Associated Rhodococcus qingshengii RL1 Reveals Stress Tolerance and Plant–Microbe Interaction Traits. Frontiers in Microbiology, 12 https://doi.org/10.3389/fmicb.2021.708605.

Dimensions

PlumX

Visitas a la página del resumen del artículo

992

Descargas

Los datos de descargas todavía no están disponibles.