
Publicado
ANTIFUNGAL ACTIVITY SCREENING OF ANTARCTIC ACTINOBACTERIA AGAINST PHYTOPATHOGENIC FUNGI
Evaluación de la actividad antifúngica de actinobacterias antárticas contra hongos fitopatógenos
DOI:
https://doi.org/10.15446/abc.v25n2.76405Palabras clave:
Antagonism, Antarctic bacteria, antifungal, extremophile, plant pathogen (en)Antagonismo, antifúngico, bacteria antártica, extremófilos, patógeno de plantas (es)
Descargas
The extreme weather conditions in the Antarctic have exerted selective pressures favoring differential features in bacteria to survive this untapped environment (i.e., antibiotic molecules). Notably, higher chances of antibiotic discovery from extremophiles have been proposed recently. Althoughnew organic and environmentally friendly sources for helping in the control of plant pathogenic fungi are necessary, the information about anti-phytopathogenic applications of extremophile microorganisms from untapped environments is limited. In this study, we determined the antifungal effect of actinobacterial strains isolated from Antarctic soils and sediments. Co-culture inhibition assays and Minimum Inhibitory Concentration (MIC) determination revealed that all Antarctic strains (x28) can inhibit the growth of at least one phytopathogenic fungi including Fusarium oxysporum,Rhizoctonia solani,Botrytissp. and Phytophthora infestans. Additionally, new novel antagonistic relationships are reported. Our work establishes a precedent on Antarctic actinobacteria strains with the capacity to produce antifungal compounds, and its potential for developing new fungicides or biocontrol agents solving current agriculture problems.
Las condiciones climáticas extremas en la Antártica han ejercido presiones selectivas en las bacterias, de forma que éstas poseen características diferenciales (ej. moléculas antibióticas) que les permiten sobrevivir a este entorno poco explorado. Recientemente se ha propuesto que pueden existir mayores posibilidades para el descubrimiento de antibióticos a partir de extremófilos. A pesar de que son necesarias nuevas fuentes orgánicas y amigables con el medio ambiente para controlar los hongos patógenos en plantas, la información sobre las aplicaciones anti-fitopatogénicas de microorganismos extremófilos, de ambientes poco explorados, es limitada. En este estudio, se determinó el efecto antifúngico de actinobacterias aisladas de suelos y sedimentos antárticos. Mediante ensayos de inhibición en co-cultivo y determinación de la concentración mínima inhibitoria (CIM) se reveló que todas las cepas antárticas (x28) tienen la capacidad de inhibir el crecimiento de al menos un hongo fitopatógeno, incluyendo Fusarium oxysporum,Rhizoctonia solani,Botrytissp. y Phytophthora infestans. Adicionalmente, se reportan nuevas relaciones antagónicas. Nuestro trabajo establece un precedente sobre cepas de actinobacterias antárticas con capacidad para la producción de compuestos antifúngicos y su potencial para el desarrollo de nuevos fungicidas o agentes de control biológico con el fin de resolver problemas actuales de la agricultura.
Referencias
Cary SC, McDonald IR, Barrett JE, Cowan DA. On the rocks: The microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol. 2010;8:129–38. Doi: https://doi.org/10.1038/nrmicro2281.
Chiba H, Agematu H, Kaneto R, Terasawa T, Sakai K, Dobashi K, Yoshioka T. Rhodopeptins ( Mer-N1033 ), Novel Cyclic Tetrapeptides Activity from Rhodococcus sp. with Antifungal. J Antibiot . 1999;52(8):695–699.
Convey P, Stevens MI, Hodgson DA, Smellie JL, Hillenbrand CD, Barnes DKA, et al. Exploring biological constraints on the glacial history of Antarctica. Quat Sci Rev. 2009;28(27-28):3035–3048. Doi: https://doi.org/10.1016/j.quascirev.2009.08.015
Costa FG, Zucchi TD, De Melo IS. Biological control of phytopathogenic fungi by endophytic actinomycetes isolated from maize (Zea mays L.). Brazilian Arch Biol Technol. 2013;56(6):948–955. Doi: https://doi.org/10.1590/S1516-89132013000600009
Fenice M, Gooday GW. Mycoparasitic actions against fungi and oomycetes by a strain (CCFEE 5003) of the fungus Lecanicillium muscarium isolated in Continental Antarctica. Ann Microbiol. 2006;56:1–6. Doi: https://doi.org/10.1007/BF03174961
Lo Giudice A, Bruni V, Michaud L. Characterization of Antarctic psychrotrophic bacteria with antibacterial activities against terrestrial microorganisms. J Basic Microbiol. 2007;47(6):496–505. Doi: https://doi.org/10.1002/jobm.200700227
Iwatsuki M, Uchida R, Takakusagi Y, Matsumoto A, Jiang CL, Takahashi Y, et al. Lariatins, novel anti-mycobacterial peptides with a lasso structure, produced by Rhodococcus jostii K01-B0171. J Antibiot. 2007;60:367–363. Doi: https://doi.org/10.1038/ja.2007.48
Jackson SA, Crossman L, Almeida EL, Margassery LM, Kennedy J, Dobson ADW. Diverse and abundant secondary metabolism biosynthetic gene clusters in the genomes of marine sponge derived Streptomyces spp. Isolates. Mar Drugs. 2018;16(2):67. Doi: https://doi.org/10.3390/md16020067
Lamilla C, Pavez M, Santos A, Hermosilla A, Llanquinao V, Barrientos L. Bioprospecting for extracellular enzymes from culturable Actinobacteria from the South Shetland Islands, Antarctica. Polar Biol. 2017;40(3):719–726. Doi: https://doi.org/10.1007/s00300-016-1977-z
Law JWF, Ser HL, Khan TM, Chuah LH, Pusparajah P, Chan KG, et al. The potential of streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Front Microbiol. 2017;8. Doi: https://doi.org/10.3389/fmicb.2017.00003
Legrand F, Picot A, Cobo-Díaz JF, Chen W, Le Floch G. Challenges facing the biological control strategies for the management of Fusarium Head Blight of cereals caused by F. graminearum. Biol Control. 2017;113:26–38. Doi: https://doi.org/10.1016/j.biocontrol.2017.06.011
Manivasagan P, Kang KH, Sivakumar K, Li-Chan ECY, Oh HM, Kim SK. Marine actinobacteria: An important source of bioactive natural products. Environ Toxicol Pharmacol. 2014;38(1):172–188. Doi: https://doi.org/10.1016/j.etap.2014.05.014
Núñez-Montero K, Barrientos L. Advances in antarctic research for antimicrobial discovery: A Comprehensive narrative review of bacteria from antarctic environments as potential sources of novel antibiotic compounds against human pathogens and microorganisms of industrial importance. Antibiotics. 2018;7(4):90. Doi: https://doi.org/10.3390/antibiotics7040090
Núñez-Montero K, Lamilla C, Abanto M, Maruyama F, Jorquera MA, Santos A, Martinez-Urtaza J, Barrientos L. Antarctic Streptomyces fildesensis So13.3 strain as a promising source for antimicrobials discovery. Sci Rep. 2019;9:7488. Doi: https://doi.org/10.1038/s41598-019-43960-7
O’Brien A, Sharp R, Russell NJ, Roller S. Antarctic bacteria inhibit growth of food-borne microorganisms at low temperatures. FEMS Microbiol Ecol. 2004;48(2):157–167. Doi: https://doi.org/10.1016/j.femsec.2004.01.001
Park HJ, Kim D, Kim IH, Lee CE, Kim IC, Kim JY, et al. Characteristics of cold-adaptive endochitinase from Antarctic bacterium Sanguibacter antarcticus KOPRI 21702. Enzyme Microb Technol. 2009;45(5):391–396. Doi: https://doi.org/10.1016/j.enzmictec.2009.07.002
Pearce DA, Newsham KK, Thorne MAS, Calvo-Bado L, Krsek M, Laskaris P, et al. Metagenomic Analysis of a Southern Maritime Antarctic Soil. Front Microbiol. 2012;3:403. Doi: https://doi.org/10.3389/fmicb.2012.00403
Plesken C, Weber RWS, Rupp S, Leroch M, Hahn M. Botrytis pseudocinerea is a significant pathogen of several crop plants but susceptible to displacement by fungicide-resistant B. cinerea strains. Appl Environ Microbiol. 2015;81:7048–7056. Doi: https://doi.org/10.1128/AEM.01719-15
Quecine MC, Araujo WL, Marcon J, Gai CS, Azevedo JL, Pizzirani-Kleiner AA. Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Lett Appl Microbiol. 2008;47(6):486–491. Doi: https://doi.org/10.1111/j.1472-765X.2008.02428.x
Ramli ANM, Mahadi NM, Rabu A, Murad AMA, Bakar FDA, Illias RM. Molecular cloning, expression and biochemical characterisation of a cold-adapted novel recombinant chitinase from Glaciozyma antarctica PI12. Microb Cell Fact. 2011;10:94. Doi: https://doi.org/10.1186/1475-2859-10-94
Rashad YM, Al-Askar AA, Ghoneem KM, Saber WIA, Hafez EE. Chitinolytic Streptomyces griseorubens E44G enhances the biocontrol efficacy against Fusarium wilt disease of tomato. Phytoparasitica. 2017;45(2):227–237. Doi: https://doi.org/10.1007/s12600-017-0580-3
Rosen PC, Seyedsayamdost MR. Though Much Is Taken, Much Abides: Finding New Antibiotics Using Old Ones. Biochemistry. 2017;56(37):4925–4926. Doi: https://doi.org/10.1021/acs.biochem.7b00782
Sangorrín MP, Lopes CA, Vero S, Wisniewski M. Cold-adapted yeasts as biocontrol agents: Biodiversity, adaptation strategies and biocontrol potential. In: Buzzini P, Margesin R, editors. Cold-adapted YeastsBiodiversity, Adapt. Strateg. Biotechnol. Significance, Berlin, Heidelberg: Springer; 2014. Doi: https://doi.org/10.1007/978-3-642-39681-6_20
Shuping DSS, Eloff JN. The use of plants to protect plants and food against fungal pathogens: A review. African J Tradit Complement Altern Med AJTCAM. 2017;14(4):120–127. Doi: https://doi.org/10.21010/ajtcam.v14i4.14
Son SW, Kim HY, Choi GJ, Lim HK, Jang KS, Lee SO, et al. Bikaverin and fusaric acid from Fusarium oxysporum show antioomycete activity against Phytophthora infestans. J Appl Microbiol. 2008;104(3):692–698. Doi: https://doi.org/10.1111/j.1365-2672.2007.03581.x
Vero S, Garmendia G, González MB, Bentancur O, Wisniewski M. Evaluation of yeasts obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of apple (Malus × domestica). FEMS Yeast Res. 2013;13(2):189–199. Doi: https://doi.org/10.1111/1567-1364.12021
Weinstein MP, Zimmerl BL, Cockerill FR, Wiker MA, Alder J, Dudley MN, et al. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Clin Lab Stand Inst. 2012;11:1–91. Wibberg D, Andersson L, Tzelepis G, Rupp O, Blom J, Jelonek L, et al. Genome analysis of the sugar beet pathogen Rhizoctonia solani AG2-2IIIB revealed high numbers in secreted proteins and cell wall degrading enzymes. BMC Genomics. 2016;17:245. Doi: https://doi.org/10.1186/s12864-016-2561-1
Wietz M, Mansson M, Gotfredsen CH, Larsen TO, Gram L. Antibacterial compounds from marine Vibrionaceae isolated on a global expedition. Mar Drugs. 2010;8(12):2946–2960. Doi: https://doi.org/10.3390/md8122946
Yellamanda B, Vijayalakshmi M, Kavitha A, Reddy DK, Venkateswarlu Y. Extraction and bioactive profile of the compounds produced by Rhodococcus sp. VLD-10. 3 Biotech. 2016;6:261. Doi: https://doi.org/10.1007/s13205-016-0576-6
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Adrian David Hauser. (2023). Engineering prototype based on the study of extremophiles. Athenea, , p.14. https://doi.org/10.47460/athenea.v4i12.54.
2. Diana Elizabeth Rios-Muñiz, Zahaed Evangelista-Martínez. (2022). Antifungal activity of Streptomyces sp. CACIS-2.15CA, as a potential biocontrol agent, against some soil-borne fungi. Egyptian Journal of Biological Pest Control, 32(1) https://doi.org/10.1186/s41938-022-00630-7.
3. Talwinder Kaur, Kanika Khanna, Sonika Sharma, Rajesh K. Manhas. (2023). Mechanistic insights into the role of actinobacteria as potential biocontrol candidates against fungal phytopathogens. Journal of Basic Microbiology, 63(11), p.1196. https://doi.org/10.1002/jobm.202300027.
4. Serine Ramlawi, Sawsan Abusharkh, Alexa Carroll, David R. McMullin, Tyler J. Avis. (2021). Biological and chemical characterization of antimicrobial activity in Arthrobacter spp. isolated from disease‐suppressive compost. Journal of Basic Microbiology, 61(8), p.745. https://doi.org/10.1002/jobm.202100213.
5. Meriam Bouri, Samina Mehnaz, Fikrettin Şahin. (2022). Secondary Metabolites and Volatiles of PGPR in Plant-Growth Promotion. , p.249. https://doi.org/10.1007/978-3-031-07559-9_12.
6. Wanning Zheng, Xiaoping Fan, Hao Chen, Mujun Ye, Chang Yin, Chunyan Wu, Yongchao Liang. (2024). The response patterns of r- and K-strategist bacteria to long-term organic and inorganic fertilization regimes within the microbial food web are closely linked to rice production. Science of The Total Environment, 942, p.173681. https://doi.org/10.1016/j.scitotenv.2024.173681.
7. Geovanny Rivera-Hernández, Guillermo Daniel Tijerina-Castro, Sandra Cortés-Pérez, Ronald Ferrera-Cerrato, Alejandro Alarcón. (2024). Evaluation of functional plant growth-promoting activities of culturable rhizobacteria associated to tunicate maize (Zea mays var. tunicata A. St. Hil), a Mexican exotic landrace grown in traditional agroecosystems. Frontiers in Microbiology, 15 https://doi.org/10.3389/fmicb.2024.1478807.
8. Theresa Kuhl, Soumitra Paul Chowdhury, Jenny Uhl, Michael Rothballer. (2021). Genome-Based Characterization of Plant-Associated Rhodococcus qingshengii RL1 Reveals Stress Tolerance and Plant–Microbe Interaction Traits. Frontiers in Microbiology, 12 https://doi.org/10.3389/fmicb.2021.708605.
9. Jeffrey Vargas Perez, Lizette Serrano, Rafael Viteri, Daynet Sosa, Christian A. Romero, Nardy Diez. (2024). Antarctic Streptomyces: Promising biocontrol agents for combating Fusarium oxysporum f. sp. cubense. Biotechnology Reports, 43, p.e00852. https://doi.org/10.1016/j.btre.2024.e00852.
10. Juan Taboadela-Hernanz, Ayaka Hieno, Masafumi Shimizu. (2025). Toward Effective Biocontrol of Oomycete Plant Pathogens: Traits and Modes of Action of Biocontrol Agents, and Their Screening Approaches. Reviews in Agricultural Science, 13(1), p.32. https://doi.org/10.7831/ras.13.1_32.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2019 Acta Biológica Colombiana

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. La aceptación de manuscritos por parte de la revista implicará, además de su edición electrónica de acceso abierto bajo licencia Attribution-NonCommercial-ShareAlike 4.0 (CC BY NC SA), la inclusión y difusión del texto completo a través del repositorio institucional de la Universidad Nacional de Colombia y en todas aquellas bases de datos especializadas que el editor considere adecuadas para su indización con miras a incrementar la visibilidad de la revista.
2. Acta Biológica Colombiana permite a los autores archivar, descargar y compartir, la versión final publicada, así como las versiones pre-print y post-print incluyendo un encabezado con la referencia bibliográfica del articulo publicado.
3. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
4. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos institucionales, en su página web o en redes sociales cientificas como Academia, Researchgate; Mendelay) lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).