Publicado

2020-05-01

BIOFERTILIZATION WITH CHLOROPHYTA AND CYANOPHYTA: AN ALTERNATIVE FOR ORGANIC FOOD PRODUCTION

BIOFERTILIZACIÓN CON CLOROFITAS Y CIANOFITAS: UNA ALTERNATIVA PARA LA PRODUCCIÓN DE ALIMENTOS ORGÁNICOS

BIOFERTILIZAÇÃO COM CLOROFITOS E CIANOFITOS: UMA ALTERNATIVA PARA A PRODUÇÃO DE ALIMENTOS ORGÂNICOS

DOI:

https://doi.org/10.15446/abc.v25n2.77183

Palabras clave:

biofertilizer, cyanobacteria, green algae, organic agriculture (en)
algas verdes, agricultura orgánica, biofertilizante, cianobacterias. (es)
biofertilizante, cianobactéria, algas verdes, agricultura orgânica. (pt)

Descargas

Autores/as

Chlorophyta and Cyanophyta are photosynthetic organisms characterized by their biochemical plasticity, which has allowed them to develop in different environments and have a faster growth rate than plants. Depending on the species and environmental conditions, these organisms can produce nitrogenous enzymes, for atmospheric nitrogen fixation; phosphatases, that solubilize phosphorus; phytohormones, that promote plant growth; and hygroscopic polysaccharides, that prevent erosion and improve soil characteristics. In this sense, the aim of this review was to analyze the available information on the use of Chlorophyta and Cyanophyta as biofertilizers and their potential application in organic food production. Multiple studies and researches were found demonstrating the advantages of these microorganisms when being used to improve plants productivity, and also at the same time, leading to sustainable agriculture that is respectful to the environment. However, their high production cost has become a limiting factor for their commercialization.

Clorofitas y cianofitas son organismos fotosintéticos que se caracterizan por su plasticidad bioquímica, lo que les ha permitido desarrollarse en diferentes ambientes y tener una tasa de crecimiento más rápida que las plantas. Dependiendo de la especie y las condiciones ambientales, estos organismos pueden producir enzimas nitrogenadas para la fijación del nitrógeno atmosférico; fosfatasas que solubilizan el fósforo; fitohormonas que promueven el crecimiento de las plantas; y polisacáridos higroscópicos que evitan la erosión y mejoran las características del suelo. En este sentido, el objetivo de esta revisión fue analizar la información disponible sobre el uso de cianofitas y clorofitas como biofertilizantes, y su posible aplicación en la producción de alimentos orgánicos. Múltiples estudios e investigaciones fueron encontrados demostrando las ventajas del uso de estos microorganismos para mejorar la productividad de las plantas, y que a su vez conducen a una agricultura sostenible respetuosa con el medio ambiente. Sin embargo, su alto costo de producción se ha convertido en un factor limitante para su comercialización.

Os clorófitos e cianófitos são organismos fotossintéticos que se caracterizam pela sua plasticidade bioquímica, o que lhes permitiu desenvolver-se em diferentes ambientes e ter uma taxa de crescimento mais rápida do que as plantas. Dependendo das espécies e condições ambientais, esses organismos podem produzir enzimas nitrogenadas para a fixação do nitrogênio atmosférico; fosfatases que solubilizam fósforo; fitohormônios que promovem o crescimento das plantas; e polissacarídeos higroscópicos que impedem a erosão e melhoram as características do solo. Nesse sentido, o objetivo desta revisão foi analisar as pesquisas disponíveis sobre o uso de cianófitos e clorofitos como biofertilizantes, e sua possível aplicação na produção de alimentos orgânicos. Múltiplos trabalhos foram encontrados demonstrando as vantagens do uso desses microrganismos para melhorar a produtividade das plantas e que, por sua vez, levam a uma agricultura sustentável e respeitosa com o meio ambiente. No entanto, seu alto custo de produção tornou-se um fator limitante para sua comercialização.

Referencias

Barone V, Baglieri A, Stevanato P, Broccanello C, Bertoldo G, Bertaggia M, et al. Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). J Appl Phycol. 2018;30(2):1061-1071.

Berg A, Lindblad P, Svensson BH. Cyanobacteria as a source of hydrogen for methane formation. World J Microbiol Biotechnol. 2014;30(2):539-45.

Berri M, Slugocki C, Olivier M, Helloin E, Jacques I, Salmon H, et al. Marine-sulfated polysaccharides extract of Ulva armoricana green algae exhibits an antimicrobial activity and stimulates cytokine expression by intestinal epithelial cells. J Appl Phycol. 2016;28(5):2999-3008.

Carvajal-Muñoz JS, Carmona-Garcia CE. Benefits and limitations of biofertilization in agricultural practices. Livest Res Rural Dev. 2012;24(3):1-8.

Chamizo S, Mugnai G, Rossi Rossi F, Certini G, De Philippis R. Cyanobacteria inoculation improves soil stability and fertility on different textured soils: gaining insights for applicability in soil restoration. Front. Environ. Sci. 2018;6(49). https://doi.org/10.3389/fenvs.2018.00049.

Chittapun S, Limbipichai S, Amnuaysin N, Boonkerd R, Charoensook M. Effects of using cyanobacteria and fertilizer on growth and yield of rice, Pathum Thani I: a pot experiment. J Appl Phycol. 2018;30(1):79-85.

Colica G, Li H, Rossi F, Li D, Liu Y, De Philippis R. Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils. Soil Biol Biochem. 2014;68:62-70.

Coppens J, Grunert O, Van Den Hende S, Vanhoutte I, Boon N, Haesaert G, et al. The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. J Appl Phycol. 2016;28(4):2367-2377.

Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience. 2015;8(10):776–779.

Crowder DW, Reganold JP. Financial competitiveness of organic agriculture on a global scale. Proc. Natl. Acad. Sci. USA. 2015;112(24):7611-7616.

Dash NP, Kumar A, Kaushik MS, Singh PK. Cyanobacterial (unicellular and heterocystous) biofertilization to wetland rice influenced by nitrogenous agrochemical. J Appl Phycol. 2016;28(6):3343-3351.

da Silva Ferreira V, Sant'Anna C. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World J Microbiol Biotechnol. 2017;33(1):20.

de los Ríos A, Ascaso C, Wierzchos J, Vincent WF, Quesada A. Microstructure and cyanobacterial composition of microbial mats from the High Arctic. Biodiversity Conserv. 2015;24(4):841-863.

de Siqueira Castro J, Calijuri ML, Peixoto Assemany P, Cecon PR, Rodrigues de Assis I, Ribeiro VJ. Microalgae biofilm in soil: Greenhouse gas emissions, ammonia volatilization and plant growth. Sci Total Environ. 2017;574:1640-1648.

Dineshkumar R, Subramanian J, Gopalsamy J, Jayasingam P, Arumugam A, Kannadasan S, et al. The impact of using microalgae as biofertilizer in maize (Zea mays L.). Waste Biomass Valori. 2017;1-10.

Dineshkumar R, Kumaravel R, Gopalsamy J, Azim Sikder MN, Sampathkumar P. Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste Biomass Valori. 2018;9(5):793-800.

Di Salvo LP, Ferrando L, Fernández-Scavino A, García de Salamone IE. Microorganisms reveal what plants do not: wheat growth and rhizosphere microbial communities after Azospirillum brasilense inoculation and nitrogen fertilization under field conditions. Plant Soil. 2018;424(1-2):405-417.

Elhafiz AA, Elhafiz AA, Gaur SS, Hamdany N, Osman M, Rajya Lakshmi TV. Chlorella vulgaris and Chlorella pyrenoidosa live cells appear to be promising sustainable biofertilizer to grow rice, lettuce, cucumber and eggplant in the UAE soils. Recent res. sci. technol. 2015;7:14-21.

Eman AAM, Abdullah ASE, Ahmed MA, The combined effect of some organic manures, mineral N fertilizers and algal cells extraction on yield and fruit quality of Williams banana plants. Am Eurasian J Agric Environ Sci. 2008;4:417-426.

Faggio C, Pagano M, Dottore A, Genovese G, Morabito M. Evaluation of anticoagulant activity of two algal polysaccharides. Nat. Prod. Res. 2016;30(17):1934-1937.

Fimbres-Olivarria D, Carvajal-Millan E, Lopez-Elias JA, Martinez-Robinson KG, Miranda-Baeza A, Martinez-Cordova LR, et al. Chemical characterization and antioxidant activity of sulfated polysaccharides from Navicula sp. Food Hydrocoll. 2018;75:229-236.

Frébortová J, Plíhal O, Florová V, Kokáš F, Kubiasová K, Greplová M, et al. Light influences cytokinin biosynthesis and sensing in Nostoc (cyanobacteria). J Phycol. 2017;53(3):703-714.

Galarza JI, Delgado N, Henríquez V. Cisgenesis and intragenesis in microalgae: promising advancements towards sustainable metabolites production. Appl. Microbiol. Biotechnol. 2016;100(24):10225-10235.

Grewe CB, Pulz O. The biotechnology of cyanobacteria. In: Whitton BA, editor. Ecology of Cyanobacteria II: Their Diversity in Space and Time. Heidelberg, New York and London: Springer Dordrecht; 2012. p. 707-739.

Grzesik M, Romanowska-Duda Z. Improvements in Germination, Growth, and Metabolic Activity of Corn Seedlings by Grain Conditioning and Root Application with Cyanobacteria and Microalgae. Pol J Environ Stud. 2014;23(4):1147-1153.

Grzesik M, Romanowska-Duda Z, Kalaji HM. Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application. Photosynthetica. 2017;55(3):510-521.

Guedes AC, Amaro HM, Barbosa CR, De Pereira R, Malcata FX. Fatty acid composition of several wild microalgae and cyanobacteria, with a focus on eicosapentaenoic, docosahexaenoic and α-linolenic acids for eventual dietary uses. Food Res Int. 2011;44(9):2721-2729.

Guo M, Ding GB, Guo S, Li Z, Zhao L, Li K, et al. Isolation and antitumor efficacy evaluation of a polysaccharide from Nostoc commune Vauch. Food Funct. 2015;6(9):3035-3044.

Hagemann M, Kern R, Maurino VG, Hanson DT, Weber APM, Sage RF, et al. Evolution of photorespiration from cyanobacteria to land plants, considering protein phylogenies and acquisition of carbon concentrating mechanisms. J Exp Bot. 2016;67(10):2963-2976.

Hagemann M, Hess WR. Systems and synthetic biology for the biotechnological application of cyanobacteria. Curr Opin Biotechnol. 2018;49:94-99.

Hamouda RA, El-Ansary MSM. Potential of Plant-Parasitic Nematode Control in Banana Plants by Microalgae as a New Approach Towards Resistance. Egypt J Biol Pest Co. 2017;27(2):165-172.

Haque F, Banayan S, Yee J, Chiang YW. Extraction and applications of cyanotoxins and other cyanobacterial secondary metabolites. Chemosphere. 2017;183:164-175.

Helmy AM. Organic and Biofertilization on Crop Production in Semiarid Regions. In: Barceló D, Kostianoy AG, Editor(s). The Handbook of Environmental Chemistry. Switzerland: Springer Nature; 2018. p. 235-264.

Hoffman J, Pate RC, Drennen T, Quinn JC. Techno-economic assessment of open microalgae production systems. Algal Res. 2017;23:51-57.

Huang Y, Xiong W, Liao Q, Fu Q, Xia A, Zhu X, et al. Comparison of Chlorella vulgaris biomass productivity cultivated in biofilm and suspension from the aspect of light transmission and microalgae affinity to carbon dioxide. Bioresour. Technol. 2016;222:367-373.

Jhala YK, Panpatte DG, Vyas RV. Cyanobacteria: Source of Organic Fertilizers for Plant Growth. In: Panpatte DG, Jhala YK, Vyas RV, Shelat HN, Editor(s). Microorganisms for Green Revolution. Singapore: Springer Verlag; 2017. p. 253-264.

Kaushik MS, Kumar A, Abraham G, Dash NP, Singh PK. Field evaluations of agrochemical toxicity to cyanobacteria in rice field ecosystem: a review. J Appl Phycol. 2018;30:1-19.

Kerfahi D, Tateno R., Takahashi K, Cho HJ, Kim H, Adams JM. Development of soil bacterial communities in volcanic ash microcosms in a range of climates. Microb Ecol. 2017;73(4):775-790.

Kose A, Ozen MO, Elibol M, Oncel SS. Investigation of in vitro digestibility of dietary microalga Chlorella vulgaris and cyanobacterium Spirulina platensis as a nutritional supplement. 3 Biotech. 2017;7(3):170.

Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature. 2015;528 (7580):60.

Lehman RM, Cambardella CA, Stott DE, Acosta-Martinez V, Manter DK, Buyer JS, et al. Understanding and enhancing soil biological health: the solution for reversing soil degradation. Sustainability. 2015;7(1):988-1027.

Li H, Su L, Chen S, Zhao L, Wang H, Ding F, et al. Physicochemical characterization and functional analysis of the polysaccharide from the edible microalga Nostoc sphaeroides. Molecules. 2018;23(2):pii:E508.

Li L, Fan F, Song A, Yin C, Cui P, Li Z, et al. Microbial composition and diversity are associated with plant performance: a case study on long-term fertilization effect on wheat growth in an Ultisol. Appl. Microbiol. Biotechnol. 2017;101 (11):4669-4681.

Lu Y, Xu J. Phytohormones in microalgae: a new opportunity for microalgal biotechnology?. Trends Plant Sci. 2015;20(5):273-282.

Maila M, Marcelo B. Evaluación de la respuesta del fréjol (Phaseolus vulgaris L.) a la aplicación foliar de un fertilizante y un biofertilizante con base en algas (tesis de pregrado). Quito: Carrera de Ingeniería Agronómica, Facultad de Ciencias Agrícolas, Universidad Central del Ecuador; 2018. p. 89.

Malik Z, Ahmad M, Abassi GH, Dawood M, Hussain A, Jamil M. Agrochemicals and soil microbes: interaction for soil health. In: Hashmi MZ, Kumar V, Varma A, Editor(s). Xenobiotics in the Soil Environment. Springer International Publishing AG; 2017. p.139-152.

Maqubela MP, Mnkeni PNS, Malam Issa O, Pardo MT, D’Acqui LP. Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility, and maize growth. Plant Soil. 2009;315(1-2):79-92.

Mosa WFAE, Paszt LS, Frąc M, Trzciński P. The role of biofertilization in improving apple productivity - a review. Adv Appl Microbiol. 2015;5:21-27.

Muñoz-Rojas M, Chilton A, Liyanage GS, Erickson TE, Merritt DJ, Neilan BA, et al. Effects of indigenous soil cyanobacteria on seed germination and seedling growth of arid species used in restoration. Plant Soil. 2018;429(1-2):91-100.

Nagy PT. Effects of foliar biofertilization on quality parameters of apple (Malus domestica Borkh.). Ecocycles. 2016;2(2):21-25.

Nisha R, Kiran B, Kaushik A, Kaushik CP. Bioremediation of salt affected soils using cyanobacteria in terms of physical structure, nutrient status and microbial activity. Int. J. Environ. Sci. Technol. 2018;15(3):571-580.

Nivelle E, Verzeaux J, Chabot A, Roger D, Chesnais Q, Ameline A, et al. Effects of glyphosate application and nitrogen fertilization on the soil and the consequences on aboveground and belowground interactions. Geoderma. 2018;311:45-57.

Nyberg M, Heidorn T, Lindblad P. Hydrogen production by the engineered cyanobacterial strain Nostoc PCC 7120 ΔhupW examined in a flat panel photobioreactor system. J. Biotechnol. 2015;215:35-43.

Osman MEH, El-Sheekh MM, El-Naggar AH, Gheda SF. Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biol Fert Soils. 2010;46(8):861-875.

Padhy RN, Nayak N, Dash-Mohini RR, Rath S, Sahu RK. Growth, metabolism and yield of rice cultivated in soils amended with fly ash and cyanobacteria and metal loads in plant parts. Rice Science. 2016;23(1):22-32.

Park CH, Li XR, Zhao Y, Jia RL, Hur JS. Rapid development of cyanobacterial crust in the field for combating desertification. PLoS One. 2017;12(6):e0179903.

Pereira NS, Ramires Ferreira BR, Machado de Carvalho E, Damiani CR. Application of Chlorella sorokiniana (Chlorophyceae) as supplement and/or an alternative medium for the in vitro cultivation of Schomburgkia crispa (Orchidaceae). J Appl Phycol. 2018;30(4):2347-2358.

Prasanna R, Sood A, Ratha SK, Singh PK. Cyanobacteria as a “green” option for sustainable agriculture. In: Sharma NK, Rai AK, Stal LJ, Editor(s). Cyanobacteria: An Economic Perspective. Chichester, West Sussex, UK: John Wiley & Sons Inc.; 2014. p. 145-166.

Ranjan K, Priya H, Ramakrishnan B, Prasanna R, Venkatachalam S, Thapa S, et al. Cyanobacterial inoculation modifies the rhizosphere microbiome of rice planted to a tropical alluvial soil. Appl Soil Ecol. 2016;108:195-203.

Rasuk MC, Fernández AB, Kurth D, Contreras M, Novoa F, Poiré D, et al. Bacterial diversity in microbial mats and sediments from the Atacama Desert. Microb. Ecol. 2016;71(1):44-56.

Reganold JP, Wachter JM. Organic agriculture in the twenty-first century. Nat. Plants. 2016;2(2):15221.

Renuka N, Prasanna R, Sood A, Ahluwalia AS, Bansal R, Babu S, et al. Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environ Sci Pollut R. 2016;23(7):6608-6620.

Renuka N, Guldhe A, Prasanna R, Singh P, Bux F. Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnol. Adv. 2018;36 (4):1255-1273.

Rizwan M, Mujtaba G, Memon SA, Lee K, Rashid N. Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renew Sust Energ Rev. 2018;92:394-404.

Rossi F, De Philippis R. Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life. 2015;5(2):1218-1238.

Rossi F, Li H, Liu Y, De Philippis R. Cyanobacterial inoculation (cyanobacterisation): perspectives for the development of a standardized multifunctional technology for soil fertilization and desertification reversal. Earth-Sci. Rev. 2017;171:28-43.

Sarma BK, Yadav SK, Singh S, Singh HB. Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol Biochem. 2015;87:25-33.

Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T. Disease Suppressive Soils: New Insights from the Soil Microbiome. Phytopathology. 2017;107(11):1284-1297.

Schreiber C, Schiedung H, Harrison L, Briese C, Ackermann B, Kant J, et al. Evaluating potential of green alga Chlorella vulgaris to accumulate phosphorus and to fertilize nutrient-poor soil substrates for crop plants. J Appl Phycol. 2018;30(5):2827–2836.

Shahane AA, Singh YV, Kumar D, Prasanna R, Chakraborty D. Effect of planting methods and cyanobacterial inoculants on yield, water productivity and economics of rice cultivation. J Agr Rural Dev Trop. 2015;116(2):107-121.

Silva AN, de Figueiredo CC, de Carvalho AM, dos Santos Soares D, dos Santos DCR, da Silva VG. Effects of cover crops on the physical protection of organic matter and soil aggregation. Aust J Crop Sci. 2016;11(12):1623-1629.

Singh AK, Singh PP, Tripathi V, Verma H, Singh SK, Srivastava AK, et al. Distribution of cyanobacteria and their interactions with pesticides in paddy field: A comprehensive review. J. Environ. Manage. 2018;224:361-375.

Singh SP, Pathak J, Sinha RP. Cyanobacterial factories for the production of green energy and value-added products: An integrated approach for economic viability. Renew Sust Energ Rev. 2017;69:578-595.

Sonkoly J, Valkó O, Deák B, Miglécz T, Tóth K, Radócz S, et al. A new aspect of grassland vegetation dynamics: cyanobacterium colonies affect establishment success of plants. J Veg Sci. 2017;28(3):475-483.

Sorochkina K, Velasco Ayuso S, Garcia-Pichel FPY. Establishing rates of lateral expansion of cyanobacterial biological soil crusts for optimal restoration. Plant Soil. 2018;429(1-2):199-211.

Souza GP, de Figueiredo CC, Gomes de Sousa DM. Soil organic matter as affected by management systems, phosphate fertilization, and cover crops. Pesq. agropec. bras. 2016;51(9):1668-1676.

Stephens E, Wolf J, Oey M, Zhang E, Hankamer B, Ross IL. Genetic engineering for microalgae strain improvement in relation to biocrude production systems. In: Moheimani NR, McHenry MP, de Boer K, Bahri PA, editor(s). Biomass and Biofuels from Microalgae. Switzerland: Springer International Publishing; 2015. p. 191-249.

Tafur Alvarez JE, Estrada Palencia L. Tratamiento de aguas residuales in vitro por medio de la microalga Chlorella sp. en el municipio de Barrancabermeja, Colombia. Revista CITECSA. 2015;6(10):5-19.

Tasende MG, Peteiro C. Explotación de las macroalgas marinas: Galicia como caso de estudio hacia una gestión sostenible de los recursos. Revista Ambienta. 2015;111:116-132.

Vandana UK, Chopra A, Bhattacharjee S, Mazumder PB. Microbial biofertilizer: A potential tool for sustainable agriculture. In: Panpatte DG, Jhala YK, Vyas RV, Shelat HN, editor(s). Microorganisms for Green Revolution - Volume 1: Microbes for Sustainable Crop Production. Singapur: Springer; 2017. p. 25-52.

Verseux C, Baqué M, Lehto K, de Vera JPP, Rothschild LJ, Billi D. Sustainable life support on Mars–the potential roles of cyanobacteria. Int. J. Astrobiol. 2016;15 (1):65-92.

Vitousek PM, Menge DNL, Reed SC, Cleveland CC. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos. Trans. Royal Soc. B: Biological Sciences. 2013;368(1621):20130119.

Wierzchos J, DiRuggiero J, Vítek P, Artieda O, Souza-Egipsy V, Skaloud P, et al. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front microbiol. 2015;6:934.

Yao Y, Zhang M, Tian Y, Zhao M, Zeng K, Zhang B, et al. Azolla biofertilizer for improving low nitrogen use efficiency in an intensive rice cropping system. Field Crops Res. 2018;216:158-164.

Cómo citar

APA

Ortiz-Moreno, M. L., Solarte-Murillo, L. V. y Sandoval-Parra, K. X. (2020). BIOFERTILIZATION WITH CHLOROPHYTA AND CYANOPHYTA: AN ALTERNATIVE FOR ORGANIC FOOD PRODUCTION. Acta Biológica Colombiana, 25(2), 303–313. https://doi.org/10.15446/abc.v25n2.77183

ACM

[1]
Ortiz-Moreno, M.L., Solarte-Murillo, L.V. y Sandoval-Parra, K.X. 2020. BIOFERTILIZATION WITH CHLOROPHYTA AND CYANOPHYTA: AN ALTERNATIVE FOR ORGANIC FOOD PRODUCTION. Acta Biológica Colombiana. 25, 2 (may 2020), 303–313. DOI:https://doi.org/10.15446/abc.v25n2.77183.

ACS

(1)
Ortiz-Moreno, M. L.; Solarte-Murillo, L. V.; Sandoval-Parra, K. X. BIOFERTILIZATION WITH CHLOROPHYTA AND CYANOPHYTA: AN ALTERNATIVE FOR ORGANIC FOOD PRODUCTION. Acta biol. Colomb. 2020, 25, 303-313.

ABNT

ORTIZ-MORENO, M. L.; SOLARTE-MURILLO, L. V.; SANDOVAL-PARRA, K. X. BIOFERTILIZATION WITH CHLOROPHYTA AND CYANOPHYTA: AN ALTERNATIVE FOR ORGANIC FOOD PRODUCTION. Acta Biológica Colombiana, [S. l.], v. 25, n. 2, p. 303–313, 2020. DOI: 10.15446/abc.v25n2.77183. Disponível em: https://revistas.unal.edu.co/index.php/actabiol/article/view/77183. Acesso em: 24 abr. 2024.

Chicago

Ortiz-Moreno, Martha Lucia, Laura Vanessa Solarte-Murillo, y Karen Ximena Sandoval-Parra. 2020. «BIOFERTILIZATION WITH CHLOROPHYTA AND CYANOPHYTA: AN ALTERNATIVE FOR ORGANIC FOOD PRODUCTION». Acta Biológica Colombiana 25 (2):303-13. https://doi.org/10.15446/abc.v25n2.77183.

Harvard

Ortiz-Moreno, M. L., Solarte-Murillo, L. V. y Sandoval-Parra, K. X. (2020) «BIOFERTILIZATION WITH CHLOROPHYTA AND CYANOPHYTA: AN ALTERNATIVE FOR ORGANIC FOOD PRODUCTION», Acta Biológica Colombiana, 25(2), pp. 303–313. doi: 10.15446/abc.v25n2.77183.

IEEE

[1]
M. L. Ortiz-Moreno, L. V. Solarte-Murillo, y K. X. Sandoval-Parra, «BIOFERTILIZATION WITH CHLOROPHYTA AND CYANOPHYTA: AN ALTERNATIVE FOR ORGANIC FOOD PRODUCTION», Acta biol. Colomb., vol. 25, n.º 2, pp. 303–313, may 2020.

MLA

Ortiz-Moreno, M. L., L. V. Solarte-Murillo, y K. X. Sandoval-Parra. «BIOFERTILIZATION WITH CHLOROPHYTA AND CYANOPHYTA: AN ALTERNATIVE FOR ORGANIC FOOD PRODUCTION». Acta Biológica Colombiana, vol. 25, n.º 2, mayo de 2020, pp. 303-1, doi:10.15446/abc.v25n2.77183.

Turabian

Ortiz-Moreno, Martha Lucia, Laura Vanessa Solarte-Murillo, y Karen Ximena Sandoval-Parra. «BIOFERTILIZATION WITH CHLOROPHYTA AND CYANOPHYTA: AN ALTERNATIVE FOR ORGANIC FOOD PRODUCTION». Acta Biológica Colombiana 25, no. 2 (mayo 1, 2020): 303–313. Accedido abril 24, 2024. https://revistas.unal.edu.co/index.php/actabiol/article/view/77183.

Vancouver

1.
Ortiz-Moreno ML, Solarte-Murillo LV, Sandoval-Parra KX. BIOFERTILIZATION WITH CHLOROPHYTA AND CYANOPHYTA: AN ALTERNATIVE FOR ORGANIC FOOD PRODUCTION. Acta biol. Colomb. [Internet]. 1 de mayo de 2020 [citado 24 de abril de 2024];25(2):303-1. Disponible en: https://revistas.unal.edu.co/index.php/actabiol/article/view/77183

Descargar cita

CrossRef Cited-by

CrossRef citations1

1. Sheng-Nan Wang, Shu-Han Ge, Lin-Lan Zhuang, Jian Zhang. (2024). Multiple Pathways for the Enhancement of Wheat Growth by Chlorella vulgaris. Journal of Plant Growth Regulation, 43(2), p.550. https://doi.org/10.1007/s00344-023-11113-w.

Dimensions

PlumX

Visitas a la página del resumen del artículo

1539

Descargas

Los datos de descargas todavía no están disponibles.