Publicado

2020-05-01

Antimicrobial peptides, an alternative to combat bacterial resistance

Péptidos antimicrobianos, una alternativa para el combate de la resistencia bacteriana

DOI:

https://doi.org/10.15446/abc.v25n2.77407

Palabras clave:

Antimicrobial potential, immune system, therapeutic agents (en)
Agentes terapéuticos, potencial antimicrobiano, sistema inmunológico (es)

Descargas

Autores/as

Antimicrobial peptides of higher organisms have been studied for the past 25 years, and their importance as components of innate immunity is now well established. The essential simplicity of their chemical structure, along with the lower likelihood of developed resistance compared to conventional antibiotics, has made them attractive candidates for development as therapeutics. The objective of this review article is to describe the current relevance, main mechanisms presented, and the uses of antimicrobial peptides as new therapies in the clinical area. The information used was mainly compiled from scientific articles based on a systematic review of scientific papers with data on human antimicrobial peptides (AMPs) and their different applications, searching without date limits and only documents in English and Spanish. Gray literature was accessed through manual search, and no restrictions were made involving study design for a retrospective study. Although these products have not yet been commercialized, they have advantages over the currently available treatments since they are not expected to cause bacterial resistance due to their three-dimensional structure, amphipathic tendency, and cationic character; however, the technique of peptide production is still new and is in the early stages of innovation of new molecules.

Los péptidos antimicrobianos de organismos superiores han sido estudiados durante los últimos 25 años y su importancia como componentes de la inmunidad innata está ahora bien establecida. La simplicidad básica de la estructura química de los péptidos antimicrobianos junto con la menor probabilidad de aparición de resistencia en comparación con los antibióticos convencionales los ha convertido en candidatos atractivos para el desarrollo como terapéuticos. El objetivo de este artículo de revisión es describir la relevancia actual, los mecanismos principales que presentan y los usos que se están dando como nuevas terapias en la clínica, donde la información usada es recopilada principalmente de artículos científicos con datos sobre AMPs humanos y sus diferentes aplicaciones. Aunque aún no se comercialicen estos productos, tienen ventajas sobre los tratamientos que ya se tienen, puesto que se prevé no causen resistencia bacteriana, esto debido a su estructura tridimensional, su tendencia anfipática y carácter catiónico. Aunque la técnica de producción de péptidos es aún nueva y están en las primeras etapas de innovación de nuevas moléculas, promete importantes logros en un futuro cercano en el diseño de péptidos más eficientes o que sean estables en diferentes ambientes.

Referencias

Andersson DI, Hughes D, Kubicek-Sutherland JZ. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat. 2016;26:43-57. Doi: https://doi.org/10.1016/j.drup.2016.04.002

Angel OD, Samael K, Sánchez-Evangelista G, Carmona-Navarrete I, Galicia-Sánchez MDC, Gómez-Luna A, et al. Péptidos antimicrobianos, una alternativa prometedora para el tratamiento de enfermedades infecciosas. Gac Med Mex. 2018;154(6),681-688. Doi: https://doi.org/10.1016/j.drup.2016.04.002

Baltz RH. Synthetic biology, genome mining, and combinatorial biosynthesis of NRPS-derived antibiotics: a perspective. J Ind Microbiol Biotechnol. 2018;45(7),635-649. Doi: https://doi.org/10.1007/s10295-017-1999-8

Barns KJ, Weisshaar JC. Real-time attack of LL-37 on single Bacillus subtilis cells. Biochim Biophys Acta Biomembr. 2013;1828(6):1511-1520. Doi: https://doi.org/10.1016/j.bbamem.2013.02.011

Campos OR, Crocomo WB, Labinas AM. Comparative biology of the whitefly Trialeurodes vaporariorum (West.) (Hemiptera - Homoptera: Aleyrodidae) on soybean and bean cultivars. Neotrop Entomol. 2003;32(1):133-138. Doi: http://dx.doi.org/10.1590/S1519-566X2003000100020

Chapman A, Lindermayr C, Glawischnig E. Expression of antimicrobial peptides under control of a camalexin-biosynthetic promoter confers enhanced resistance against Pseudomonas syringae. Phytochemistry. 2016;122:76-80. Doi: https://doi.org/10.1016/j.phytochem.2016.01.001

Chapman JR, Hill T, Unckless RL. Balancing selection drives maintenance of genetic variation in Drosophila antimicrobial peptides. bioRxiv. 2018. Doi: https://doi.org/10.1101/298893

Chung EMC, Dean SN, Propst CN, Bishop BM, van Hoek ML. Komodo dragon-inspired synthetic peptide DRGN-1 promotes wound-healing of a mixed-biofilm infected wound. Npj Biofilms and Microbiomes. 2017;3. Doi: https://doi.org/10.1038/s41522-017-0017-2

Da Costa JP, Cova M, Ferreira R, Vitorino R. Antimicrobial peptides: an alternative for innovative medicines? Appl. Microbiol. Biotechnol. 2015;99(5):2023-2040. Doi: https://doi.org/10.1007/s00253-015-6375-x

Dobias J, Poirel L, Nordmann P. Cross-resistance to human cationic antimicrobial peptides and to polymyxins mediated by the plasmid-encoded MCR-1? Clin Microbiol Infect. 2017;23(9):676-e1-e5. Doi: https://doi.org/10.1016/j.cmi.2017.03.015

Eckert R. Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development. Future Microbiol. 2011;6(6):635-651. Doi: https://doi.org/10.2217/fmb.11.27

Frick IM, Nordin SL, Baumgarten M, Mörgelin M, Sørensen OE, Olin AI et al. Constitutive and inflammation-dependent antimicrobial peptides produced by epithelium are differentially processed and inactivated by the commensal Finegoldia magna and the pathogen Streptococcus pyogenes. J. Immunol. 2011;187:4300–4309. Doi: https://doi.org/10.4049/jimmunol.1004179

Haney EF, Hancock RE. Peptide design for antimicrobial and immunomodulatory applications. Biopolymers. 2013;100(6):572-583. Doi: https://doi.org/10.1002/bip.22250

Hanson MA, Dostalova A, Ceroni C, Poidevin M, Kondo S, Lemaitre B. Synergy and remarkable specificity of antimicrobial peptides in vivo using a systematic knockout approach. Elife. 2019;9:e44341. Doi: https://doi.org/10.7554/eLife.44341

Hao G, Shi YH, Tang YL, Le GW. The intracellular mechanism of action on Escherichia coli of BF2-A/C, two analogues of the antimicrobial peptide Buforin 2. J Microbiol. 2013;51(2):200-206. Doi: https://doi.org/10.1007/s12275-013-2441-1

Hashemi MM, Rovig J, Weber S, Hilton B, Forouzan MM, Savage PB. Susceptibility of colistin-resistant, Gram-negative bacteria to antimicrobial peptides and ceragenins. Antimicrob Agents Chemother. 2017;61(8):e00292-17. Doi: https://doi.org/10.1128/AAC.00292-17

Juhas M. Horizontal gene transfer in human pathogens. Crit. Rev. Microbiol. 2015;41(1):101–108. Doi: https://doi.org/10.3109/1040841X.2013.804031

Lashua LP, Melvin JA, Deslouches B, Pilewski JM, Montelaro RC, Bomberger JM. Engineered cationic antimicrobial peptide (eCAP) prevents Pseudomonas aeruginosa biofilm growth on airway epithelial cells. Antimicrob Agents Chemother. 2016;71(8):2200-2207. Doi: https://doi.org/10.1093/jac/dkw143

Lee H, Hwang JS, Lee J, Kim JI, Lee DG. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism. Biochim Biophys Acta Biomembr. 2015;1848(2):634-642. Doi: https://doi.org/10.1016/j.bbamem.2014.11.016

Lohner K. Membrane-active antimicrobial peptides as template structures for novel antibiotic agents. Curr. Top. Med. Chem. 2017;17(5):508-519.

Marahiel MA. A structural model for multimodular NRPS assembly lines. Nat. Prod. Rep. 2016;33(2):136-140. Doi: https://doi.org/10.1039/C5NP00082C

Maróti Gergely G, Kereszt A, Kondorosi É, Mergaert P. Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol. 2011;162(4):363-374. Doi: https://doi.org/10.1016/j.resmic.2011.02.005

Melvin JA, Montelaro RC, Bomberger JM. Clinical potential of engineered cationic antimicrobial peptides against drug resistant biofilms. Expert Rev Anti Infect Ther. 2016;14(11):989-991. Doi: https://doi.org/10.1080/14787210.2016.1236687

Nelson DC, Garbe J, Collin M. Cysteine proteinase SpeB from Streptococcus pyogenes – a potent modifier of immunologically important host and bacterial proteins. Biol. Chem. 2011; 392(12):1077–1088. Doi: https://doi.org/10.1515/BC.2011.208

Nguyen LT, Chau JK, Zaat SA, Vogel HJ. Cyclic tritrpticin analogs with distinct biological activities. Probiotics Antimicrob Proteins. 2011;3(2):132-143. Doi: https://doi.org/10.1007/s12602-011-9067-6

Omardien S, Brul S, Zaat SA. Antimicrobial activity of cationic antimicrobial peptides against gram-positives: current progress made in understanding the mode of action and the response of bacteria. Front Cell Dev Biol. 2016;4:111. Doi: https://doi.org/10.3389/fcell.2016.00111

Rave LJG, Bravo AXM, Castrillo JS, Marín LMR, Pereira CC. Scorpion venom: New promise in the treatment of cancer. Acta Biolo Colomb. 2019;24(2):213-223. Doi: https://doi.org/10.15446/abc.v24n2.71512

Rahnamaeian M, Cytryńska M, Zdybicka-Barabas A, Vilcinskas A. The functional interaction between abaecin and pore-forming peptides indicates a general mechanism of antibacterial potentiation. Peptides. 2016;78:17–23. Doi: https://doi.org/10.1016/j.peptides.2016.01.016

Robbel L, Marahiel MA. Daptomycin, a bacterial lipopeptide synthesized by a nonribosomal machinery. J Biol Chem. 2010;285(36):27501-27508. Doi: https://doi.org/10.1074/jbc.R110.128181

Shurko JF, Galega RS, Li C, Lee GC. Evaluation of LL-37 antimicrobial peptide derivatives alone and in combination with vancomycin against S. aureus. Jpn J Antibiot. 2018;71(11):971-974. Doi: 10.1038/s41429-018-0090-7

Téllez GA, Castaño JC. Antimicrobial peptides. Infection. 2010;14(1):55-67.

Tetens J, Friedrich JJ, Hartmann A, Schwerin M, Kalm E, Thaller G. The spatial expression pattern of antimicrobial peptides across the healthy bovine udder. J Dairy Sci. 2010;93(2):775-783. Doi: https://doi.org/10.3168/jds.2009-2729

Tomasinsig L, De Conti G, Skerlavaj B, Piccinini R, Mazzilli M, D'Este F, Zanetti M. Broad-spectrum activity against bacterial mastitis pathogens and activation of mammary epithelial cells support a protective role of neutrophil cathelicidins in bovine mastitis. Infect Immun. 2010;78(4):1781-1788. Doi: https://doi.org/10.1128/IAI.01090-09

Van der Velden WJ, van Iersel TM, Blijlevens NM, Donnelly JP. Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11). BMC medicine. 2009;7(1):44. Doi: https://doi.org/10.1186/1741-7015-7-44

Waghu FH, Barai RS, Gurung P, Idicula-Thomas S. CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res. 2016;44(D1):1094-1097. Doi: https://doi.org/10.1093/nar/gkv1051

Walsh CT, O'Brien RV, Khosla C. Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angew. Chem. 2013;52(28):7098-7124. Doi: https://doi.org/10.1002/anie.201208344

Wang G. Improved methods for classification, prediction, and design of antimicrobial peptides. In Computational Peptidology. New York, NY: Humana Press; 2015. p. 43-66.

Wang K, Dang W, Yan J, Chen R, Liu X, Yan W et al. Membrane perturbation action mode and structure-activity relationships of Protonectin, a novel antimicrobial peptide from the venom of the neotropical social wasp Agelaia pallipes pallipes. Antimicrob Agents Chemother. 2013;57(10):4632-4639. Doi: https://doi.org/10.1128/AAC.02311-12

Yim G, Thaker MN, Koteva K, Wright G. Glycopeptide antibiotic biosynthesis. Jpn J. Antib. 2014;67(1):31-41. Doi: https://doi.org/10.1038/ja.2013.117

Yu G, Baeder D, Regoes R, Rolff J. Predicting drug resistance evolution: antimicrobial peptides vs. antibiotics. bioRxiv. 2017;138107. Doi: https://doi.org/10.1101/138107

Zare-Zardini H, Salehvarzi M, Ghanizadeh F, Sadri Z, Sheikhpour R, Zare Bidoki F, et al. Antimicrobial peptides of innate immune system as a suitable compound for cancer treatment and reduction of its related infectious disease. Iran J Ped Hematol Oncol. 2018;8(1):62-70.

Zhang LJ, Gallo RL. Antimicrobial peptides. Curr. Biol. 2016;26(1):14-19. Doi: https://doi.org/10.1016/j.cub.2015.11.017

Cómo citar

APA

Mejía-Argueta, E. L., Santillán Benítez, J. G. y Ortiz-Reynoso, M. (2020). Antimicrobial peptides, an alternative to combat bacterial resistance. Acta Biológica Colombiana, 25(2), 294–302. https://doi.org/10.15446/abc.v25n2.77407

ACM

[1]
Mejía-Argueta, E.L., Santillán Benítez, J.G. y Ortiz-Reynoso, M. 2020. Antimicrobial peptides, an alternative to combat bacterial resistance. Acta Biológica Colombiana. 25, 2 (may 2020), 294–302. DOI:https://doi.org/10.15446/abc.v25n2.77407.

ACS

(1)
Mejía-Argueta, E. L.; Santillán Benítez, J. G.; Ortiz-Reynoso, M. Antimicrobial peptides, an alternative to combat bacterial resistance. Acta biol. Colomb. 2020, 25, 294-302.

ABNT

MEJÍA-ARGUETA, E. L.; SANTILLÁN BENÍTEZ, J. G.; ORTIZ-REYNOSO, M. Antimicrobial peptides, an alternative to combat bacterial resistance. Acta Biológica Colombiana, [S. l.], v. 25, n. 2, p. 294–302, 2020. DOI: 10.15446/abc.v25n2.77407. Disponível em: https://revistas.unal.edu.co/index.php/actabiol/article/view/77407. Acesso em: 22 ago. 2024.

Chicago

Mejía-Argueta, Euridice L., Jonnathan G. Santillán Benítez, y Mariana Ortiz-Reynoso. 2020. «Antimicrobial peptides, an alternative to combat bacterial resistance». Acta Biológica Colombiana 25 (2):294-302. https://doi.org/10.15446/abc.v25n2.77407.

Harvard

Mejía-Argueta, E. L., Santillán Benítez, J. G. y Ortiz-Reynoso, M. (2020) «Antimicrobial peptides, an alternative to combat bacterial resistance», Acta Biológica Colombiana, 25(2), pp. 294–302. doi: 10.15446/abc.v25n2.77407.

IEEE

[1]
E. L. Mejía-Argueta, J. G. Santillán Benítez, y M. Ortiz-Reynoso, «Antimicrobial peptides, an alternative to combat bacterial resistance», Acta biol. Colomb., vol. 25, n.º 2, pp. 294–302, may 2020.

MLA

Mejía-Argueta, E. L., J. G. Santillán Benítez, y M. Ortiz-Reynoso. «Antimicrobial peptides, an alternative to combat bacterial resistance». Acta Biológica Colombiana, vol. 25, n.º 2, mayo de 2020, pp. 294-02, doi:10.15446/abc.v25n2.77407.

Turabian

Mejía-Argueta, Euridice L., Jonnathan G. Santillán Benítez, y Mariana Ortiz-Reynoso. «Antimicrobial peptides, an alternative to combat bacterial resistance». Acta Biológica Colombiana 25, no. 2 (mayo 1, 2020): 294–302. Accedido agosto 22, 2024. https://revistas.unal.edu.co/index.php/actabiol/article/view/77407.

Vancouver

1.
Mejía-Argueta EL, Santillán Benítez JG, Ortiz-Reynoso M. Antimicrobial peptides, an alternative to combat bacterial resistance. Acta biol. Colomb. [Internet]. 1 de mayo de 2020 [citado 22 de agosto de 2024];25(2):294-302. Disponible en: https://revistas.unal.edu.co/index.php/actabiol/article/view/77407

Descargar cita

CrossRef Cited-by

CrossRef citations2

1. Michaela van den Honert, Louwrens Hoffman. (2023). Present Knowledge in Food Safety. , p.871. https://doi.org/10.1016/B978-0-12-819470-6.00011-1.

2. Rafael J. Mendes, Laura Regalado, João P. Luz, Natália Tassi, Cátia Teixeira, Paula Gomes, Fernando Tavares, Conceição Santos. (2021). In Vitro Evaluation of Five Antimicrobial Peptides against the Plant Pathogen Erwinia amylovora. Biomolecules, 11(4), p.554. https://doi.org/10.3390/biom11040554.

Dimensions

PlumX

Visitas a la página del resumen del artículo

1196

Descargas

Los datos de descargas todavía no están disponibles.