
Publicado
Alta presencia de cadmio resulta en baja diversidad de hongos formadores de micorrizas arbusculares asociados a cacao (Theobroma cacao L.)
High cadmium concentration resulted in low arbuscular mycorrhizal fungi community diversity associated to cocoa (Thebroma cacao L.)
DOI:
https://doi.org/10.15446/abc.v25n3.78746Palabras clave:
dominancia, comunidades fúngicas, estrategias de adaptación, metales pesados, tolerancia (es)adaptation strategy, dominance, fungal communities, heavy metals, tolerance (en)
Descargas
Arbuscular mycorrhizae fungi (AMF) are obligate symbionts present in rhizosphere of cocoa plants and their community diversity is modified depending on several factors, such as cadmium (Cd) presence in soil. AMF persistence on Cd natural enriched soils might be an indicator of their tolerance and their potential in biotechnological applications. In this research we characterized local AMF community structure present in cocoa rhizosphere soils with low (B-Cd: 0,1 mg kg-1) and high (A-Cd: 20,9 mg kg-1) natural Cd concentrations. AMF spore identification was carried out using taxonomic keys and their abundance, richness and diversity were determined in original samples and after multiplication process using onion trap cultures.AMF communities were compared using alpha and beta diversity indexes and principal component analysis (PCA). The results indicated that A-Cd presented significative lower values of abundance (21 %), richness (20 %) and diversity (11 %) of AMF morphospecies in comparison with B-Cd.Both AMF communities presented five of seven genera in common, but only four of 23 morphospecies described were found in two communities. Low similarity and turnover were found among AMF communities throughout beta diversity analysis and PCA.Dominance of Diversispora spurca, Rhizoglomussp. and Claroideoglomus etunicatumin A-Cd suggests that these morphospecies are stress-tolerant and they are potential candidates for the development of mitigation strategies in cocoa plants under Cd stress.
Referencias
Antoniolli ZI, Facelli E, Miller D, Smith SE. Spore communities of arbuscular mycorrhizal fungi and mycorrhizal association in different ecosystems, South Australia. Rev Bras Ciência do Solo. 2002;26(1):627-635.
Arévalo-gardini E, Arévalo-hernández CO, Baligar VC, He ZL. Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Sci Total Environ. 2017;606:792-800. http://dx.doi.org/10.1016/j.scitotenv.2017.06.122
Audet P, Charest C. Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: Meta-analytical and conceptual perspectives. Environ Pollut. 2007;147:609-614. doi: http://dx.doi.org/10.1016/j.envpol.2006.10.006
Bravo D, Pardo-Díaz S, Benavides-Erazo J, Rengifo-Estrada G, Braissant O, Leon-Moreno C. Cadmium and cadmium-tolerant soil bacteria in cacao crops from northeastern Colombia. J Appl Microbiol. 2018;124(5):1175-1194. doi: http://dx.doi.org/10.1111/jam.13698
Brundrett M, Piche Y, Peterson R. A new method for observing the morphology of vesicular-arbuscular mycorrhizae. Can J Bot.1984;62:2128-2134.
Brundrett MC, Tedersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 2018; 220:1108-1115. doi: http://doi.wiley.com/10.1111/nph.14976
Chagnon P, Bradley RL, Maherali H, Klironomos JN. A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci. 2013;18(9):484-491. doi: http://doi.org/10.1016/j.tplants.2013.05.001
Chavez E, He ZL, Stoffella PJ, et al. Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Sci Total Environ. 2015;533:205-214. doi: http://doi.org/10.1016/j.scitotenv.2015.06.106
Chavez E, He ZL, Stoffella PJ, Mylavarapu RS, Li YC, Baligar VC. Chemical speciation of cadmium: An approach to evaluate plant-available cadmium in Ecuadorian soils under cacao production. Chemosphere. 2016;150:57-62. doi: http://doi.org/10.1016/j.chemosphere.2016.02.013
Del Val C, Barea JM, Azcón-Aguilar C. Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl Enviromental Microbiol. 1999;65(2):718-723.
FAO, OMS. Proposed draft maximum levels for cadmium in chocolate and cocoa-derived products. Programa Conjunto FAO/OMS sobre normas alimentarias comisión del codex sobre contaminación en los alimentos. 2014;6:1-20.
Gramlich A, Tandy S, Andres C, Chicheros J, Amengot L, Schneider M, et al. Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management. Sci Total Environ. 2017;580:677-686.
Gramlich A, Tandy S, Gauggel C, López M, Perla D, Gonzales V, et al. Soil cadmium uptake by cocoa in Honduras. Sci Total Environ. 2018;612:370-378. doi: http://doi.org/10.1016/j.scitotenv.2017.08.145
Hart MM, Reader RJ, Klironomos JN. Life-history strategies of arbuscular mycorrhizal fungi in relation to their successional dynamics. Mycologia. 2001;93(6):1186. doi: http://doi.org/10.2307/3761678
Hassan S, Boon E, St-Arnaud M, Hijri M. Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils. Mol Ecol. 2011;20:3469-3483. doi: http://doi.org/10.1111/j.1365-294X.2011.05142.x
Hazard C, Gosling P, Gast CJ, Mitchell DT, Doohan FM, Bending GD. The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale. ISME J. 2012;7(3):498-508. doi: http://doi.org/10.1038/ismej.2012.127
He ZL, Yang XE, Stoffella PJ. Trace elements in agroecosystems and impacts on the environment. 2005;19:125-140. doi: http://doi.org/10.1016/j.jtemb.2005.02.010
Hildebrandt U, Regvar M, Bothe H. Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry. 2007;68(1):139-146. doi: http://doi.org/10.1016/j.phytochem.2006.09.023
IGAC. Estudio general de suelos y zonificación de tierras del departamento de Cundinamarca. Bogotá, Colombia: CARTOPRINT Ltda.; 2000. p. 1-571.
Jiménez Tobón CS. Estado legal mundial del cadmio en cacao (Theobroma cacao): fantasía o realidad. Producción+Limpia. 2015;10(1):89-104.
Kabata-Pendias A, Barbara S. Trace Elements in Abiotic and Biotic Environments. Boca Raton, USA, CRC Press; 2015. p. 1-393.
Kassambara A. Practical Guide to Principal Component Methods in R. 1st edition, Marseille, STHDA; 2017.p.1-170.
Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere. 2000;41(1):197-207. doi: http://doi.org/10.1016/S0045-6535(99)00412-9
Khan AG. Mycorrhizoremediation - an enhanced form of phytoremediation. J Zhejiang Univ Sci B. 2006;7(7):503-514. doi: http://doi.org/10.1631/jzus.2006.B0503
Krishnamoorthy R, Kim C, Subramanian P, Kim K, Selvakumar G, Sa T. Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration. PLoS One. 2015;10(6):e0128784. doi: http://doi.org/10.1371/journal.pone.0128784
Lanza J, Churion P, Liendo N, López V. Evaluación del contenido de metales pesados en cacao (Teobroma cacao L .) de Santa Bárbara de Zulia, Venezuela. Saber, Univ Oriente. 2016;28(1):106-115.
Lopes Leal P, Varón-López M, Gonçalves I, Valentim J, Fonseca CR, Siquiera JO, et al. Enrichment of arbuscular mycorrhizal fungi in a contaminated soil after rehabilitation. Brazilian J Microbiol. 2016;47(4):853-862. doi: http://doi.org/10.1016/j.bjm.2016.06.001
Lora R, Bonilla H. Remediation of a soil contaminated with the heavy metals cadmium and cromium on the high basin of the Bogota river. Rev UDCA Actual y Divulg Cient. 2010;13(2):61-70.
Mahar A, Wang P, Ali A, Kumar M, Hussain A, Wang Q, et al. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotox Environ Safe. 2016;126:111-121. doi: http://doi.org/10.1016/j.ecoenv.2015.12.023
Meier S, Borie F, Bolan N, Cornejo P. Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit Rev Environ Sci Technol. 2012;42(7):741-775. doi: http://doi.org/10.1080/10643389.2010.528518
Meter A, Atkinson RJ, Laliberte B. 2019. Cadmio en el cacao de América Latina y el Caribe-Análisis de la investigación y soluciones potenciales para la mitigación. Roma: Bioversity International; 2019. p. 1-83.
Millar NS, Bennett AE. Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi. Oecologia. 2016;182(3):625-641. doi: http://doi.org/10.1007/s00442-016-3673-7
Morton JB, Bentivenga SP, Bever JD. Discovery, measurement, and interpretation of diversity in arbuscular endomycorrhizal fungi (Glomales, Zygomycetes). Can J Bot. 1995;73(S1):25-32. doi: http://doi.org/10.1139/b95-221
Oehl F, Sieverding E, Palenzuela J, Ineichen K, Alves da silva G. Advances in Glomeromycota taxonomy and classification. IMA Fungus. 2011;2(2):191-199. doi: http://doi.org/10.5598/imafungus.2011.02.02.10
Oehl F, Laczko E, Oberholzer H-R, Jansa J, Egli S. Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils. Biol Fertil Soils. 2017;53:777–797. doi: http://doi.org/10.1007/s00374-017-1217-x
Pagano MC, Persiano AIC, Cabello MN, Scotti MR. Elements sequestered by arbuscular mycorrhizal spores in riverine soils: A preliminary assessment. J Biophys Struct Biol. 2010;2(2):16-21.
Rodriguez A, Sanders IR. The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J. 2015;9(5):1053–1061. doi: http://doi.org/10.1038/ismej.2014.207
Rodríguez Albarrcín SH, Darghan AE, Henao MC. Spatial regression modeling of soils with high cadmium content in a cocoa producing area of Central Colombia. Geoderma Regional; 2019;16:e0214. doi: http://doi.org/10.1016/j.geodrs.2019.e00214
Sanders IR, Rodriguez A. Aligning molecular studies of mycorrhizal fungal diversity with ecologically important levels of diversity in ecosystems. ISME J. 2016;10(12):2780-2786. doi: http://doi.org/10.1038/ismej.2016.73
Schenk N, Perez Y. Manual for the Identification of VA Mycorrhizal Fungi. 3th Edition. Gainesville, FL: Sinergistic Publications; 1990. p. 1-286.
Schneider J, Bundschuh J, do Nascimento CWA. Arbuscular mycorrhizal fungi-assisted phytoremediation of a lead-contaminated site. Sci Total Environ. 2016;572:86-97. doi: http://doi.org/10.1016/j.scitotenv.2016.07.185
Souza FA, Dalpé Y, Declerck S, Providencia IE, Séjalon-Delmas N. Life history strategies in Gigasporaceae: insight from monoxenic culture. Vitr Cult mycorrhizas. 2005;4:73-91. doi: http://doi.org/10.1007/3-540-27331-X_5
Souza J, Oehl F, Donizete C, et al. Diversity of arbuscular mycorrhizal fungi in the Brazilian’s Cerrado and in soybean under conservation and conventional tillage. Appl Soil Ecol. 2017;117-118:178-189. doi: http://doi.org/10.1016/j.apsoil.2017.04.023
Suzuki R, Shimodaira H. Pvclust: An R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 2006;22(12):1540-1542. doi: http://doi.org/10.1093/bioinformatics/btl117
Svenningsen NB, Watts-Williams SJ, Joner EJ, et al. Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota. ISME J. 2018;12:1296–1307. doi: http://doi.org/10.1038/s41396-018-0059-3
USDA. Claves para la taxonomía de suelos. 12 ed. Washington, DC., USDA-Natural Resources Conservation Service; 2014.p.1-410.
Villarreal H, Álvarez S, Córdoba F, Escobar G, Fagua F, Gast H, et al. Métodos para el análisis de datos: una aplicación para resultados provenientes de caracterizaciones de biodiversidad. In: Manual de métodos para el desarrollo de inventarios de biodiversidad. Bogotá, Colombia: Panamericana Formas e Impresos S.A.; 2004. p. 187-225
Vogel-Mikuš K, Drobne D, Regvar M. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut. 2005;133(2):233-242. doi: http://doi.org/10.1016/j.envpol.2004.06.021
Weissenhorn I, Leyval C, Berthelin J. Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy-metal polluted soils. Plant Soil. 1993;157(2):247-256. doi: http://doi.org/10.1007/BF00011053
Xu X, Chen C, Zhang Z, et al. The influence of environmental factors on communities of arbuscular mycorrhizal fungi associated with Chenopodium ambrosioides revealed by MiSeq sequencing investigation. Sci Rep. 2017;7(45134):1-11. doi: http://doi.org/10.1038/srep45134
Zarei M, König S, Hempel S, Nekouei MK, Savaghebi G, Buscot F. Community structure of arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region. Environ Pollut. 2008;156(3):1277-1283. doi: http://doi.org/10.1016/j.envpol.2008.03.006
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Geomar Vallejos-Torres, Samy C. Torres, Nery Gaona-Jimenez, Jorge Saavedra, Juan C. Tuesta, Oscar A. Tuesta, Alejandra G. Becerra, César Marín, María del Mar Alguacil. (2022). The Combined Effect of Arbuscular Mycorrhizal Fungi and Compost Improves Growth and Soil Parameters and Decreases Cadmium Absorption in Cacao (Theobroma cacao L.) Plants. Journal of Soil Science and Plant Nutrition, 22(4), p.5174. https://doi.org/10.1007/s42729-022-00992-9.
2. Henry Aguirre, Patricio Viteri, Pamela León, Yerimar Mayía, Patricio Cobos, Mariuxi Mero, Beatriz Pernía. (2021). Fitotoxicidad del cadmio sobre la germinación y crecimiento inicial de variedades de maíz Ecuatorianas. Bioagro, 34(1), p.3. https://doi.org/10.51372/bioagro341.1.
3. Jimilgton Enrique Soto Sogamoso, Jesús Emilio Pinto Lopera, Edwin Eduardo Millán Rojas. (2022). Micorrizas arbusculares y las técnicas de visión artificial para su identificación. TecnoLógicas, 25(54), p.e2348. https://doi.org/10.22430/22565337.2348.
4. Geomar Vallejos-Torres, Nery Gaona-Jimenez, Alberto Alva Arevalo, Christopher Paredes, Andi Lozano, Jorge Saavedra-Ramírez, Luis A. Arévalo, Keneth Reátegui, Wilfredo Mendoza-Caballero, César Marín. (2023). Cadmium uptake and mycorrhization by cacao clones in agroforestry and monoculture systems of Peruvian Amazon. Bioagro, 35(3), p.237. https://doi.org/10.51372/bioagro353.7.
5. Tancredo Souza, Izabelle Cristine Barros, Lucas Jónatan Rodrigues da Silva, Lídia Klestadt Laurindo, Gislaine dos Santos Nascimento, Edjane Oliveira de Lucena, Marcio Martins, Vanderley Borges dos Santos. (2022). Soil microbiota community assembling in native plant species from Brazil’s legal Amazon. Symbiosis, 86(1), p.93. https://doi.org/10.1007/s13199-021-00828-7.
6. Bernabé Luis-Alaya, Marcia Toro, Rocío Calsina, Katty Ogata-Gutiérrez, Alejandra Gil-Polo, Ernesto Ormeño-Orrillo, Doris Zúñiga-Dávila. (2023). Evaluation of the Presence of Arbuscular Mycorrhizae and Cadmium Content in the Plants and Soils of Cocoa Plantations in San Martin, Peru. Diversity, 15(2), p.246. https://doi.org/10.3390/d15020246.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2020 Acta Biológica Colombiana

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. La aceptación de manuscritos por parte de la revista implicará, además de su edición electrónica de acceso abierto bajo licencia Attribution-NonCommercial-ShareAlike 4.0 (CC BY NC SA), la inclusión y difusión del texto completo a través del repositorio institucional de la Universidad Nacional de Colombia y en todas aquellas bases de datos especializadas que el editor considere adecuadas para su indización con miras a incrementar la visibilidad de la revista.
2. Acta Biológica Colombiana permite a los autores archivar, descargar y compartir, la versión final publicada, así como las versiones pre-print y post-print incluyendo un encabezado con la referencia bibliográfica del articulo publicado.
3. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
4. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos institucionales, en su página web o en redes sociales cientificas como Academia, Researchgate; Mendelay) lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).