Publicado

2020-05-01

Use of Biochar in agriculture.

Uso del biocarbón en la agricultura

Uso do biocarvão na agricultura

DOI:

https://doi.org/10.15446/abc.v25n2.79466

Palabras clave:

pyrolysis, mineralization, plant nutrition, carbon capture (en)
pirólisis, mineralización, nutrición vegetal, captura de carbono (es)
pirólise, mineralização, nutrição vegetal, captura de carbono (pt)

Descargas

Autores/as

The objective of this review is to show in a general way how biochar (BC) can be obtained and its effects on the physicochemical properties of soils and physiological behavior of cultivated plants. BC is a product rich in carbon that comes from the pyrolysis of biomass, generally of vegetable origin. BC is obtained by the decomposition of organic matter exposed to temperatures between 200-900 ºC in an atmosphere with low oxygen availability (pyrolysis), which can be slow, intermediate or fast. Depending on the biomass and the temperature used in its production, BC can contain high levels of elements such as carbon, nitrogen, oxygen, hydrogen, sulfur, among others. The main sources to produce biochar are forest, agroindustrial and manure residues. BC quality and physical-chemical characteristics will depend not only on the type of waste or plant material for production, but also on the plant photosynthetic apparatus. The high carbon contents present in organic matter, which are more resistant to biological and chemical decomposition, are stabilized by the pyrolysis process. When incorporated into the soil, BC remains stable for longer periods of time and is not volatilized into the atmosphere; this allows BC to be considered as an important compound for the mitigation of the impacts of polluting substances. Additionally, it has been found that BC application improves the physicochemical characteristics of the soil, including fertility. This improvement generates positive responses in the physiological behavior of cultivated plants such as the increase of germination, accumulation of dry matter, photosynthetic rate, yield and quality of the harvested organ. BC use opens important doors for the sustainable management of agriculture in Colombia. It can be considered in production systems exposed to heavy metals such as vegetables and perennial species, in order to reduce the impact of these substances on human health.

El objetivo de esta revisión es mostrar en forma general como es el proceso de obtención de biocarbón (BC), sus efectos sobre las propiedades fisicoquímicas de los suelos y el comportamiento fisiológico en plantas cultivadas. El BC es un producto rico en carbono que proviene de la pirólisis de biomasa generalmente de origen vegetal. El BC se obtiene mediante la descomposición de la materia orgánica en exposición a temperaturas entre 200-900 ºC en una atmósfera con baja disponibilidad de oxígeno (pirólisis), que puede ser lenta, intermedia o rápida. Dependiendo de la biomasa y la temperatura utilizada en su producción, el BC puede contener altos niveles de elementos como el carbono, nitrógeno, oxígeno, hidrógeno, azufre, entre otros. Las fuentes principales para producir biocarbón son: residuos forestales, agroindustriales y estiércol. La calidad y características físico-químicas del BC no solo dependerán del tipo de residuos o material vegetal para la producción, sino también del aparato fotosintético de las plantas Los altos contenidos de carbón presentes en la materia orgánica en una forma más resistente a la descomposición biológica y química es estabilizado por el proceso de pirólisis, que al ser incorporado al suelo se mantiene estable durante más tiempo y no es volatilizado a la atmósfera le permite ser considerada como un compuesto importante para la mitigación de los impactos de la polución de sustancias contaminantes. Adicionalmente, se ha encontrado que la aplicación de BC mejora las características fisicoquímicas del suelo, entre ellas la fertilidad, generando respuestas positivas en el comportamiento fisiológico de las plantas cultivadas como el incremento de la germinación, acumulación de materia seca, tasa fotosintética, rendimiento y calidad del órgano cosechado. El uso de BC abre ventanas importantes en el manejo sostenible de la agricultura en Colombia. Puede ser considerado en sistemas de producción expuestos a metales pesados como las hortalizas y especies perennes, con fines de reducir su impacto en la salud humana.
O objetivo desta revisão é mostrar de maneira geral como o biochar (BC) pode ser obtido e seus efeitos nas propriedades físico-químicas dos solos e no comportamento fisiológico de plantas cultivadas. O BC é um produto rico em carbono proveniente da pirólise da biomassa, geralmente de origem vegetal. O BC é obtido pela decomposição de matéria orgânica exposta a temperaturas entre 200-900 ºC em atmosfera com baixa disponibilidade de oxigênio (pirólise), que pode ser lenta, intermediária ou rápida. Dependendo da biomassa e da temperatura utilizada em sua produção, o BC pode conter altos níveis de elementos como carbono, nitrogênio, oxigênio, hidrogênio, enxofre, entre outros. As principais fontes de produção de biochar são resíduos florestais, agroindustriais e de esterco. A qualidade da BC e as características físico-químicas dependerão não apenas do tipo de resíduo ou material vegetal para produção, mas também do aparato fotossintético da planta. Os altos teores de carbono presentes na matéria orgânica, mais resistentes à decomposição biológica e química, são estabilizados pelo processo de pirólise. Quando incorporado ao solo, o BC permanece estável por períodos mais longos e não é volatilizado para a atmosfera; isso permite que o BC seja considerado um composto importante para a mitigação dos impactos de substâncias poluentes. Além disso, verificou-se que a aplicação de BC melhora as características físico-químicas do solo, incluindo a fertilidade. Essa melhora gera respostas positivas no comportamento fisiológico de plantas cultivadas, como o aumento da germinação, acúmulo de matéria seca, taxa fotossintética, rendimento e qualidade do órgão colhido. O uso da BC abre importantes portas para o manejo sustentável da agricultura na Colômbia. Pode ser considerado em sistemas de produção expostos a metais pesados, como vegetais e espécies perenes, a fim de reduzir o impacto dessas substâncias sobre a saúde humana.

Referencias

AHMAD M, RAJAPAKSHA AU, LIM JE, ZHANG M, BOLAN N, MOHAN D, VITHANAGE M, LEE SS, OK YS. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere. 2014;99:19-33.

AHMAD M, LEE SS, DOU X, MOHAN D, SUNG JK, YANG JE, OK YS. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 2012;118:536–544.

ALTLAND JE, LOCKE JC. Biochar affects macronutrient leaching from a soilless substrate. HortScience. 2012;47(8):1136-1140.

ANDERSON CR, CONDRON LM, CLOUGH TJ, FIERS M, STEWART A, HILL RA, SHERLOCK RR. Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia. 2011;54(5):309-320.

ANGIN D, KÖSE TE, SELENGIL U. Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff. Appl. Surf. Sci. 2013;280:705–710.

ASAI H, SAMSON BK, STEPHAN HM, SONGYIKHANGSUTHOR K, HOMMA K, KIYONO Y, INOUE Y, SHIRAIWA T, HORIE T. Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research. 2009;111(1):81-84.

ATKINSON CJ, FITZGERALD JD, HIPPS NA. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and Soil. 2010;337(1-2):1-18.

BATOOL A, TAJ S, RASHID A, KHALID A, QADEER S, SALEEM AR, GHUFRAN MA. Potential of soil amendments (Biochar and Gypsum) in increasing water use efficiency of Abelmoschus esculentus L. Moench. Frontiers in plant science. 2015;6.

BIEDERMAN LA, HARPOLE WS. Biochar and its effects on plant productivity and nutrient cycling: a meta‐analysis. GCB bioenergy. 2013;5(2): 02-214.

BOMMARAJU BK. Use of biochar and compost as substrate alternatives in coffee plant production (Tesis de maestría). Università di Bologna. Italia. 2016.

BROWN R. Biochar production technology. In: Lehmann, J., Joseph, S. (Eds.), Biochar for Environmental Management Science and Technology. Earthscans, UK. 2009;127–146

BUSSCHER WJ., NOVAK JM, EVANS DE, WATTS DW, NIANDOU MAA, AHMEDNA M. Influence of biochar on physical properties of a Norfolk loamy sand. Soil Science. 2010;175:10–14.

CAO X, MA L, LIANG Y, GAO B, HARRIS W. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environ. Sci. Technol. 2011;45:4884–4889.

CAO XD, HARRIS W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresou Technol. 2010;101:5222–5228

CHAN KY, XU Z. Biochar: nutrient properties and their enhancement. J. Lehmann, S. Joseph (Eds.), Biochar for Environmental Management: Science and Technology, Earthscan Publications Ltd., United Kingdom. 2009;67–81

CHAN KY, VAN ZWIETEN L, MESZAROS I, DOWNIE A, JOSEPH S. Agronomic values of greenwaste biochar as a soil amendment. Soil Research. 2008;45(8):629-634.

CHEAH PM, HUSNI MHA, SAMSURI AW, CHUAH AL. Short-term field decomposition of pineapple stump biochar in tropical peat soil. Malaysian Journal of Soil Science. 2013;17:85-97.

CHEN B, CHEN Z. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere. 2009;76:127–133.

CHEN B, ZHOU D, ZHU L. Transitional adsorption and partition on nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol. 2008;42:5137–5143.

CH'NG HY, AHMED OH, MAJID NMA. Improving phosphorus availability, nutrient uptake and dry matter production of Zea mays L. on a tropical acid soil using poultry manure biochar and pineapple leaves compost. Experimental Agriculture. 2015;52(03):447-465.

CHOPPALA GK, BOLAN NS, MEGHARAJ M, CHEN Z, NAIDU R. The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. J Environ Qual. 2012;41:1175–1184

COLLINS H. Use of biochar from the pyrolysis of waste organic material as a soil amendment: laboratory and greenhouse analyses. A Quarterly Progress Report Prepared for the Biochar Project. 2008.

DE SOUSA SGA, DE ARAÚJO MI, WANDELLI EV. Saberes tradicionais dos povos amazônicos no contexto do processo de transição agroecológica. Revista Ambientalmente sustentable. 2015;2(20):1699-1717.

DIAS BO, SILVA CA, HIGASHIKAWA FS, ROIG A, SÁNCHEZ-MONEDERO MA. Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification. Bioresource technology. 2010;101(4):1239-1246.

DISPENZA V, DE PASQUALE C, FASCELLA G, MAMMANO MM, ALONZO G. Use of biochar as peat substitute for growing substrates of Euphorbia× lomi potted plants. Spanish Journal of Agricultural Research. 2017;14(4):1-14.

DONG X, MA LQ, LI Y. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. J. Hazard. Mater. 2011;190:909–915.

ELAD Y, DAVID DR, HAREL YM, BORENSHTEIN M, KALIFA HB, SILBER A, GRABER ER. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology. 2010;100(9):913-921.

FELLET G, MARCHIOL L, DELLE VEDOVE G, PERESSOTTI A. Application of biochar on mine tailings: effects and perspectives for land reclamation. Chemosphere. 2011;83:1262–1297

FERRERA-CERRATO R, ROJAS-AVELIZAPA NG, POGGI-VARALDO HM, ALARCÓN A, CAÑIZARES-VILLANUEVA RO. Procesos de biorremediación de suelo y agua contaminados por hidrocarburos del petróleo y otros compuestos orgánicos. Rev Latinoam Microbiol. 2006;48(2):179-187.

FIALLOS-ORTEGA LR, FLORES-MANCHENO LG, DUCHI-DUCHI N, FLORES-MANCHENO CI, BAÑO-AYALA D, ESTRADA-OROZCO L. Restauración ecológica del suelo aplicando biochar (carbón vegetal), y su efecto en la producción de Medicago sativa. Revista Ciencia y Agricultura. 2015;12(2):13-20.

FU B, GE C, YUE L, LUO J, FENG D, DENG H, YU H. Characterization of biochar derived from pineapple peel waste and its application for sorption of oxytetracycline from aqueous solution. BioResources. 2016;11(4):9017-9035.

GASKIN JW, STEINER C, HARRIS K, DAS KC, BIBENS B. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. Asabe. 2008;51(6):2061-2069.

GÓMEZ LA, CRUZ-DOMINGUEZ A, JIMÉNEZ-MADRID D, OCAMPO-DURAN A, PARRA-GONZÁLEZ S. Biochar as an amendment in an oxisol and its effect on the growth of corn. Revista UDCA Actualidad ydif Divulgación Científica. 2016;19(2):341-349.

GU M, LI Q, STEELE PH, NIU G, YU F. Growth of ‘Fireworks’ gomphrena grown in substrates amended with biochar. Journal of Food, Agriculture & Environment. 2013;11(1):819-821.

HADJITTOFI L, PRODROMOU M, PASHALIDIS I. Activated biochar derived from cactus fibres–preparation, characterization and application on Cu (II) removal from aqueous solutions. Bioresour. Technol. 2014;159:460–464.

HARTLEY W, DICKINSON NM, RIBY P, LEPP NW. Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus. Environ Pollut. 2009;157:2654–2662

HERATH I, KUMARATHILAKA P, AL-WABEL MI, ABDULJABBAR A, AHMAD M, USMAN ARA, VITHANAGE M. Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar. Micropor. Mesopor. Mat. 2016;225:280–288.

JEFFERY S, VERHEIJEN FG, KAMMANN C, ABALOS D. Biochar effects on methane emissions from soils: A meta-analysis. Soil Biology and Biochemistry. 2016;101:251-258.

JHA P, BISWAS AK, LAKARIA BL, RAO AS. Biochar in agriculture–prospects and related implications. Current science. 2010;99(9):1218-1225.

JIANG J, XU R, JIANG T, LI Z. Immobilization of Cu (II), Pb (II) and Cd (II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J Hazard Mater. 2012;229:145–150

JIMÉNEZ TOBÓN CS. Estado legal mundial del cadmio en cacao (Theobroma cacao): fantasía o realidad. Producción+ Limpia. 2015;10(1):89-104.

JIN HM, CAPAREDA S, CHANG ZZ, GAO J, XU YD, ZHANG JY. Biochar pyrolytically produced from municipal solid wastes for aqueous As (V) removal: adsorption property and its improvement with KOH activation. Bioresour. Technol. 2014;169:622–629.

JONES DL, JONES GE, MURPHY DV. Biochar mediated alternations in herbicide breakdown and leaching in soil. Soil Biol. Biochem. 2011;43:804–813.

JONES DL, ROUSK J, EDWARDS-JONES G, DELUCA TH, MURPHY DV. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biology and Biochemistry. 2012;45:113-124.

JUNG C, BOATENG LK, FLORA JR, OH J, BRASWELL MC, SON A, YOON Y. Competitive adsorption of selected non-steroidal anti-inflammatory drugs on activated biochars: experimental and molecular modeling study. Chem. Eng. J. 2015;264:1–9.

KARHU K, MATTILA T, BERGSTRÖM I, REGINA K. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity–results from a short-term pilot field study. Agriculture, Ecosystems & Environment. 2011;140(1):309-313.

KEILUWEIT M, NICO PS, JOHNSON MG, KLEBER M. 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2010;44:1247–1253.

KLOSS S, ZEHETNER F, DELLANTONIO A, HAMID R, OTTNER F, LIEDTKE V, SCHWANNINGER M, GERZABEK MH, SOJA G. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J. Environ. Qual. 2012;41:990–1000.

KOLTON M, HAREL YM, PASTERNAK Z, GRABER ER, ELAD Y, CYTRYN E. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Applied and environmental microbiology. 2011;77(14):4924-4930.

KUZYAKOV Y, SUBBOTINA I, CHEN H, BOGOMOLOVA I, XU X. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biology & Biochemistry. 2009;41:210–219.

LAU C, JARVIS A, RAMIREZ-VILLEGAS J. Agricultura colombiana: Adaptación al cambio climático. CIAT Políticas en Síntesis No. 1. 2011. 4pp

LEHMANN J, JOSEPH S. Biochar for environmental management: an introduction. Biochar for Environmental Management-Science and Technology, UK, Earthscan. 2009.

LEHMANN J, RILLIG MC, THIES J, MASIELLO CA, HOCKADAY WC, CROWLEY D. Biochar effects on soil biota–a review. Soil Biology and Biochemistry. 2011;43(9):1812-1836.

LI YC, SHAO JG, WANG XH, DENG Y, YANG HP, CHEN HP. Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption. Energy Fuels. 2014;28(8):5119–5127.

LIANG B, LEHMANN J, SOLOMON D, KINYANGI J, GROSSMAN J, O'NEILL B, SKJEMSTAD JO, THIES J, LUIZAO FJ, PETERSEN J, NEVES EG. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal. 2006;70(5):1719-1730.

LIU P, LIU WJ, JIANG H, CHEN JJ, LI WW, YU HQ. Modification of biochar derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresour. Technol. 2012;121:235–240.

MACHIDA M, AIKAWA M, TATSUMOTO H. Prediction of simultaneous adsorption of Cu(II) and Pb(II) onto activated carbon by conventional Langmuir type equations. J. Hazard. Mater. 20055;120(1–3):271–275.

MAJOR J, RONDON M, MOLINA D, RIHA SJ, LEHMANN J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and soil. 2010;333(1-2):117-128.

MÉNDEZ A, GÓMEZ A, PAZ-FERREIRO J, GASCÓ G. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere. 2012;89:1354–1359

MIRANDA D, CARRANZA C, ROJAS CA, JEREZ CM, FISCHER G, ZURITA J. Acumulación de metales pesados en suelo y plantas de cuatro cultivos hortícolas, regados con agua del río Bogotá. Revista Colombiana de Ciencias Hortícolas. 2011;2(2):180-191.

MOHAN D, PITTMAN CU, STEELE PH. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels. 2006;20:848–889.

MOHAN D, RAJPUT S, SINGH VK, STEELE PH, PITTMAN Jr CU. Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. J. Hazard. Mater. 2011;188:319–333.

MONDAL S, AIKAT K, HALDER G. Biosorptive uptake of ibuprofen by chemically modified Parthenium hysterophorus derived biochar: equilibrium, kinetics, thermodynamics and modeling. Ecol. Eng. 2016;92:158–172.

Montoya PJ. Caracterización de algunas propiedades físicas y factores de conversión del café. Manizales: Universidad de Caldas. 2006;107 p.

MULLEN CA, BOATENG AA, GOLDBERG NM, LIMA IS, LAIRD DA, HICKS KB. Bio-oil and bio-char production from corn cobs and stover by pyrolysis. Biomass Bioenergy. 2010;34:67–74.

NOGUERA D, RONDÓN M, LAOSSI KR, HOYOS V, LAVELLE P, DE CARVALHO MHC, BAROT S. Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils. Soil biology and Biochemistry. 2010;42(7):1017-1027.

OECC. Oficina Española de Cambio Climático. Plan Nacional de Adaptación al Cambio Climático. Marco para la coordinación entre administraciones públicas para las actividades de evaluación de impactos, vulnerabilidad y adaptación al cambio climático. 2013. En: http://www.magrama.gob.es/es/cambio-climatico/temas/impactosvulnerabilidad-y-adaptacion/plan-nacional-adaptacion-cambio-climatico/plannacional-de-adaptacion-al-cambio-climatico/default.aspx Consultado en febrero del 2019.

OGUNTUNDE PG, FOSU M, AJAYI AE, VAN DE GIESEN N. Effects of charcoal production on maize yield, chemical properties and texture of soil. Biology and Fertility of Soils. 2004;39(4):295-299.

OLMO M, ALBURQUERQUE JA, BARRÓN B, DEL CAMPILLO MC, GALLARDO A, FUENTES M, VILLAR R. Wheat growth and yield responses to biochar addition under Mediterranean climate conditions. Biology and Fertility of Soils. 2014;50(8):1177-1187

PAK NM, REMPILLO O, NORMAN AL, LAYZELL DB. Early Atmospheric Detection of CO2 from Carbon Capture and Storage Sites. 2016.

RAJAPAKSHA AU, VITHANAGE M, AHMAD M, SEO DC, CHO JS, LEE SE, LEE SS, OK YS. Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar. J. Hazard. Mater. 2015;290:43–50.

RAJAPAKSHA AU, CHEN SS, TSANG DC, ZHANG M, VITHANAGE M, MANDAL S, GAO B, BOLAN NS, OK YS. Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere. 2016;148(27):6e291.

REGMI P, GARCIA MOSCOSO JL, KUMAR S, CAO XY, MAO JD, SCHAFRAN G. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. J. Environ. Manage. 2012;109:61–69.

REZENDE FA, SANTOS VAHFD, MAIA CMBDF, MORALES MM. Biochar in substrate composition for production of teak seedlings. Pesquisa Agropecuária Brasileira, 2016;51(9):1449-1456.

RODRÍGUEZ L, SALAZAR P, PRESTON TR. Effect of biochar and biodigester effluent on growth of maize in acid soils. Livestock research for rural development. 2009;21(7):110.

RODRÍGUEZ N. Producción de bioetanol a partir de pulpa y el mucílago del café. In: Informe anual de actividades 2006-2007. Chinchiná (Colombia), Cenifacé. Disciplina de Calidad y Manejo Ambiental. 2007;78 p.

RODRÍGUEZ VN. Estudio de un biosistema integrado para el postratamiento de las aguas residuales del café utilizando macrófitas acuáticas. Universidad Politécnica de Valencia. Departamento de Ingeniería hidráulica y Medio ambiente. Valencia España. 2009;508 p. Esp. (Tesis: Doctor) (Tesis dirigida por Miguel Rodilla Alamá).

SCHULZ H, DUNST G, GLASER B. Positive effects of composted biochar on plant growth and soil fertility. Agronomy for sustainable development. 2013;33(4):817-827.

SEEHAUSEN ML, GALE NV, DRANGA S, HUDSON V, LIU N, MICHENER J, THURSTON E, WILLIAMS C, SMITH SM, THOMAS SC. Is There a Positive Synergistic Effect of Biochar and Compost Soil Amendments on Plant Growth and Physiological Performance? Agronomy. 2017;7(1):13.

SHACKLEY S, CARTER S, KNOWLES T, MIDDELINK E, HAEFELE S, SOHI S, CROSS A, HASZELDINE S. Sustainable gasification-biochar systems? A case study of rice-husk gasification in Cambodia, Part 1: Context, chemical properties, environmental and health and safety issues. Energy Policy. 2012;42:49–58.

SOHI SP. Carbon storage with benefits. Science. 2012;338:1034–1035.

SOLAIMAN ZM, SARCHESHMEHPOUR M, ABBOTT LK, BLACKWELL P. Effect of biochar on arbuscular mycorrhizal colonisation, growth, P nutrition and leaf gas exchange of wheat and clover influenced by different water regimes. In Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world, Brisbane, Australia, 1-6 August 2010. Symposium 2.3. 1 The soil-root interface (2010;35-37). International Union of Soil Sciences (IUSS), c/o Institut für Bodenforschung, Universität für Bodenkultur.

SORRENTI G, MASIELLO CA, TOSELLI M. Biochar interferes with kiwifruit Fe-nutrition in calcareous soil. Geoderma. 2016;272:10-19.

SPOKAS KA, KOSKINEN WC, BAKER JM, REICOSKY DC. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere. 2009;77:574–581.

STEINER C, TEIXEIRA WG, LEHMANN J, NEHLS T, VASCONCELOS DE MACÊDO JL, BLUM WEH, ZECH W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil. 2007;291:275-290.

SUKIRAN MA, KHEANG LS, BAKAR NA, MAY CY. Production and characterization of bio-char from the pyrolysis of empty fruit bunches. American Journal of Applied Sciences. 2011;8(10):984.

SUN J, DROSOS M, MAZZEI P, SAVY D, TODISCO D, VINCI G, PAN G, PICCOLO A. The molecular properties of biochar carbon released in dilute acidic solution and its effects on maize seed germination. Science of The Total Environment. 2017;576:858-867.

TAN XF, LIU SB, LIU YG, GU YL, ZENG GM, HU XJ, WANG X, LIU SB, JIANG LH. Biochar as potential sustainable precursors for activated carbon production: multiple applications in environmental protection and energy storage. Bioresource Technology. 2016.

TEIXEIRA WGT. As terras pretas de índio da Amazônia: sua caracterização e uso deste conhecimento na criação de novas áreas. Embrapa Amazônia Ocidental. 2009.

TONG SJ, LI JY, YUAN JH, XU RK. Adsorption of Cu(II) by biochars generated from three crop straws. Chem. Eng. J. 2011;172:828–834.

TRAKAL L, ŠIGUT R, ŠILLEROVÁ H, FATURÍKOVÁ D, KOMÁREK M. Copper removal from aqueous solution using biochar: effect of chemical activation. Arab. J. Chem. 2014;7(1):43–52.

UCHIMIYA M, KLASSON KT, WARTELLE LH, LIMA IM. Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere. 2011b;82:1431–1437.

UCHIMIYA M, CHANG S, KLASSON KT. Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J. Hazard. Mater. 2011a;190:432–441.

VACCARI FP, BARONTI S, LUGATO E, GENESIO L, CASTALDI S, FORNASIER F, MIGLIETTA F. Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy. 2011;34(4):231-238.

VAN ZWIETEN L, KIMBER S, MORRIS S, CHAN KY, DOWNIE A, RUST J, JOSEPH S, COWIE A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and soil. 2010;327(1-2):235-246.

VARDON DR, MOSER BR, ZHENG W, WITKIN K, EVANGELISTA RL, STRATHMANN TJ, STRATHMANN TJ, RAJAGOPALAN K, SHARMA BK. Complete utilization of spent coffee grounds to produce biodiesel, bio-oil, and biochar. ACS Sustainable Chemistry & Engineering. 2013;1(10):1286-1294.

VENTURA M, SORRENTI G, PANZACCHI P, GEORGE E, TONON G. Biochar reduces short-term nitrate leaching from a horizon in an apple orchard. Journal of environmental quality. 2013;42(1):76-82.

WANG BY, LI CP, LIANG H. Bioleaching of heavy metal from woody biochar using Acidithiobacillus ferrooxidans and activation for adsorption. Bioresour. Technol. 2013;146;803–806.

WAQAS M, KIM YH, KHAN AL, SHAHZAD R, ASAF S, HAMAYUN M, KANG SM, KHAN MA, LEE IJ. Additive effects due to biochar and endophyte application enable soybean to enhance nutrient uptake and modulate nutritional parameters. Journal of Zhejiang University Science B, 2017;1.

WARNOCK DD, MUMMEY DL, MCBRIDE B, MAJOR J, LEHMANN J, RILLIG MC. Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: results from growth-chamber and field experiments. Applied Soil Ecology. 2010;46(3):450-456.

XUE YW, GAO B, YAO Y, INYANG M, ZHANG M, ZIMMERMAN AR, RO KS. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests. Chem. Eng. J. 2012;200:673–680.

YANG GX, JIANG H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Res. 2014;48:396–405.

YANG XB, YING GG, PENG PA, WANG L, ZHAO JL, ZHANG LJ, YUAN P, HE HP. Influence of biochars on plant uptake and dissipation of two pesticides in an agricultural soil. J Agric Food Chem. 2010;58:7915–7921

YU XY, WANG DL, MU CL, LIU XJ. Role of biochar in slow sorption and desorption of diuron in soil. Jiangsu J Agr Sci. 2011;27:1011–1015

YU XY, YING GG, KOOKANA RS. Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere. 2009;76:665–671.

ZHANG P, SUN H, YU L, SUN T. Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: impact of structural properties of biochars. J Hazard Mater. 2013;244– 245:217–224

ZHANG YJ, XING ZJ, DUAN ZK, LI M, WANG Y. Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste. Appl. Surf. Sci. 2014;315:279–286.

ZHENG W, GUO MX, CHOW T, BENNETT DN, RAJAGOPALAN N. Sorption properties of greenwaste biochar for two triazine pesticides. J Hazard Mater. 2010;181:121–126

Cómo citar

APA

Sanchez-Reinoso, A. D., Ávila-Pedraza, E. A. y Restrepo, H. (2020). Use of Biochar in agriculture. Acta Biológica Colombiana, 25(2), 327–338. https://doi.org/10.15446/abc.v25n2.79466

ACM

[1]
Sanchez-Reinoso, A.D., Ávila-Pedraza, E.A. y Restrepo, H. 2020. Use of Biochar in agriculture. Acta Biológica Colombiana. 25, 2 (may 2020), 327–338. DOI:https://doi.org/10.15446/abc.v25n2.79466.

ACS

(1)
Sanchez-Reinoso, A. D.; Ávila-Pedraza, E. A.; Restrepo, H. Use of Biochar in agriculture. Acta biol. Colomb. 2020, 25, 327-338.

ABNT

SANCHEZ-REINOSO, A. D.; ÁVILA-PEDRAZA, E. A.; RESTREPO, H. Use of Biochar in agriculture. Acta Biológica Colombiana, [S. l.], v. 25, n. 2, p. 327–338, 2020. DOI: 10.15446/abc.v25n2.79466. Disponível em: https://revistas.unal.edu.co/index.php/actabiol/article/view/79466. Acesso em: 18 abr. 2024.

Chicago

Sanchez-Reinoso, Alefsi David, Edgar Alvaro Ávila-Pedraza, y Hermann Restrepo. 2020. «Use of Biochar in agriculture». Acta Biológica Colombiana 25 (2):327-38. https://doi.org/10.15446/abc.v25n2.79466.

Harvard

Sanchez-Reinoso, A. D., Ávila-Pedraza, E. A. y Restrepo, H. (2020) «Use of Biochar in agriculture»., Acta Biológica Colombiana, 25(2), pp. 327–338. doi: 10.15446/abc.v25n2.79466.

IEEE

[1]
A. D. Sanchez-Reinoso, E. A. Ávila-Pedraza, y H. Restrepo, «Use of Biochar in agriculture»., Acta biol. Colomb., vol. 25, n.º 2, pp. 327–338, may 2020.

MLA

Sanchez-Reinoso, A. D., E. A. Ávila-Pedraza, y H. Restrepo. «Use of Biochar in agriculture». Acta Biológica Colombiana, vol. 25, n.º 2, mayo de 2020, pp. 327-38, doi:10.15446/abc.v25n2.79466.

Turabian

Sanchez-Reinoso, Alefsi David, Edgar Alvaro Ávila-Pedraza, y Hermann Restrepo. «Use of Biochar in agriculture». Acta Biológica Colombiana 25, no. 2 (mayo 1, 2020): 327–338. Accedido abril 18, 2024. https://revistas.unal.edu.co/index.php/actabiol/article/view/79466.

Vancouver

1.
Sanchez-Reinoso AD, Ávila-Pedraza EA, Restrepo H. Use of Biochar in agriculture. Acta biol. Colomb. [Internet]. 1 de mayo de 2020 [citado 18 de abril de 2024];25(2):327-38. Disponible en: https://revistas.unal.edu.co/index.php/actabiol/article/view/79466

Descargar cita

CrossRef Cited-by

CrossRef citations27

1. Michał Kozłowski, Chinenye Adaobi Igwegbe, Agata Tarczyńska, Andrzej Białowiec. (2023). Revealing the Adverse Impact of Additive Carbon Material on Microorganisms and Its Implications for Biogas Yields: A Critical Review. Materials, 16(23), p.7250. https://doi.org/10.3390/ma16237250.

2. Salomon Barrezueta Unda, Hugo Romero Bonilla, Maylin Rios Hidalgo. (2024). Características principales del biocarbón derivado de restos de Theobroma cacao L. para su uso en suelos agrícolas. Revista Colombiana de Química, , p.19. https://doi.org/10.15446/rev.colomb.quim.v52n1.110591.

3. Maga Ram Patel, Narayan Lal Panwar. (2023). Biochar from agricultural crop residues: Environmental, production, and life cycle assessment overview. Resources, Conservation & Recycling Advances, 19, p.200173. https://doi.org/10.1016/j.rcradv.2023.200173.

4. Khushbu Kumari, Ankit Abhilash Swain, Manoj Kumar, Kuldeep Bauddh. (2021). Utilization of Eichhornia crassipes biomass for production of biochar and its feasibility in agroecosystems: a review. Environmental Sustainability, 4(2), p.285. https://doi.org/10.1007/s42398-021-00185-7.

5. Anjani KUMAR, Amaresh Kumar NAYAK, Sandeep SHARMA, Ansuman SENAPATI, Debasis MITRA, Bipasa MOHANTY, Seenichamy Rathinam PRABHUKARTHIKEYAN, Kuttalingam Gopalasubramanian SABARINATHAN, Indra MANI, Rajendra Singh GARHWAL, Sugitha THANKAPPAN, Mahapatra Smruthi SAGARIKA, Sergio DE LOS SANTOS-VILLALOBOS, Periyasamy PANNEERSELVAM. (2023). Rice straw recycling: A sustainable approach for ensuring environmental quality and economic security. Pedosphere, 33(1), p.34. https://doi.org/10.1016/j.pedsph.2022.06.036.

6. Jéssica Costa de Oliveira, Evander Alves Ferreira, Maria das Dores Magalhães Veloso, Rodinei Facco Pegoraro, André Luís Palma Salgado, Jaqueline de Cássia de Oliveira, Ana Clara Santos Duarte, Leidivan Almeida Frazão. (2023). Resposta morfofisiológica de plantas do Cerrado à aplicação de biochar de torta de filtro. Ciência Florestal, 33(3), p.e71838. https://doi.org/10.5902/1980509871838.

7. Dengkui Zhang, Erastus Mak-Mensah, Xujiao Zhou, Qi Wang, Peter Bilson Obour. (2023). Impact of Plastic Film with Wheat Straw Mulching on Maize Water Use Efficiency, Evapotranspiration, and Grain Yield in Northern China: a Meta-analysis. Journal of Soil Science and Plant Nutrition, 23(1), p.867. https://doi.org/10.1007/s42729-022-01089-z.

8. Bryony Sands, Mario Reinaldo Machado, Alissa White, Egleé Zent, Rachelle Gould. (2023). Moving towards an anti-colonial definition for regenerative agriculture. Agriculture and Human Values, 40(4), p.1697. https://doi.org/10.1007/s10460-023-10429-3.

9. Amélia Delgado, Nadia Chammem, Manel Issaoui, Emna Ammar. (2023). Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-products. Reference Series in Phytochemistry. , p.197. https://doi.org/10.1007/978-3-030-91381-6_10.

10. Jéssica Costa de Oliveira, Arlen Nicson Lopes Pena, Warley Rodrigues de Oliveira, Luiz Arnaldo Fernandes, Fernando Colen, Evander Alves Ferreira, Maria das Dores Veloso, Leidivan Almeida Frazão. (2023). Filter Cake Biochar as a Soil Conditioner Cultivated with Native Cerrado Species: Effect on Soil Chemical and Microbiological Properties. Floresta e Ambiente, 30(1) https://doi.org/10.1590/2179-8087-floram-2022-0075.

11. Alefsi David Sánchez-Reinoso, Edgar Álvaro Ávila-Pedraza, Leonardo Lombardini, Hermann Restrepo-Díaz. (2023). The Application of Coffee Pulp Biochar Improves the Physical, Chemical, and Biological Characteristics of Soil for Coffee Cultivation. Journal of Soil Science and Plant Nutrition, 23(2), p.2512. https://doi.org/10.1007/s42729-023-01208-4.

12. Muhammad Shahbaz, Ahmed AlNouss, Ikhlas Ghiat, Gordon Mckay, Hamish Mackey, Samar Elkhalifa, Tareq Al-Ansari. (2021). A comprehensive review of biomass based thermochemical conversion technologies integrated with CO2 capture and utilisation within BECCS networks. Resources, Conservation and Recycling, 173, p.105734. https://doi.org/10.1016/j.resconrec.2021.105734.

13. Yaser Hafez, Kotb Attia, Salman Alamery, Abdelhalim Ghazy, Abdullah Al-Doss, Eid Ibrahim, Emad Rashwan, Lamiaa El-Maghraby, Ahmed Awad, Khaled Abdelaal. (2020). Beneficial Effects of Biochar and Chitosan on Antioxidative Capacity, Osmolytes Accumulation, and Anatomical Characters of Water-Stressed Barley Plants. Agronomy, 10(5), p.630. https://doi.org/10.3390/agronomy10050630.

14. Ahmed A. Abdelhafez, Xu Zhang, Li Zhou, Min Cai, Naxin Cui, Guifa Chen, Guoyan Zou, Mohammed H.H. Abbas, Mona H.M. Kenawy, Mahtab Ahmad, Salman S. Alharthi, Mahdy H. Hamed. (2021). Eco-friendly production of biochar via conventional pyrolysis: Application of biochar and liquefied smoke for plant productivity and seed germination. Environmental Technology & Innovation, 22, p.101540. https://doi.org/10.1016/j.eti.2021.101540.

15. A. D. Sanchez-Reinoso, L. Lombardini, H. Restrepo-Díaz. (2022). Physiological behaviour and nutritional status of coffee (Coffea arabica L. var. Castillo) trees in response to biochar application. The Journal of Agricultural Science, 160(3-4), p.220. https://doi.org/10.1017/S0021859622000338.

16. Nimesha Rathnayake, Savankumar Patel, Ibrahim Gbolahan Hakeem, Jorge Pazferreiro, Abhishek Sharma, Rajender Gupta, Catherine Rees, David Bergmann, Judy Blackbeard, Aravind Surapaneni, Kalpit Shah. (2023). Co-pyrolysis of biosolids with lignocellulosic biomass: Effect of feedstock on product yield and composition. Process Safety and Environmental Protection, 173, p.75. https://doi.org/10.1016/j.psep.2023.02.087.

17. Mahin Saberi, Hamid Ghomi, Christian Andreasen. (2022). Eco-friendly approach to improve traits of winter wheat by combining cold plasma treatments and carbonization of subtropical biomass waste. Scientific Reports, 12(1) https://doi.org/10.1038/s41598-022-15286-4.

18. Yogita Singh, Sudhir Sharma, Upendra Kumar, Pooja Sihag, Priyanka Balyan, Krishna Pal Singh, Om Parkash Dhankher. (2024). Strategies for economic utilization of rice straw residues into value-added by-products and prevention of environmental pollution. Science of The Total Environment, 906, p.167714. https://doi.org/10.1016/j.scitotenv.2023.167714.

19. Muhammad Shahbaz, Tareq Al-Ansari, Abrar Inayat, Muddasser Inayat. (2022). Value-Chain of Biofuels. , p.335. https://doi.org/10.1016/B978-0-12-824388-6.00017-8.

20. Amélia Delgado, Nadia Chammem, Manel Issaoui, Emna Ammar. (2022). Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-products. Reference Series in Phytochemistry. , p.1. https://doi.org/10.1007/978-3-030-63961-7_10-1.

21. Melissa Simiele, Gabriella Sferra, Manhattan Lebrun, Giovanni Renzone, Sylvain Bourgerie, Gabriella Stefania Scippa, Domenico Morabito, Andrea Scaloni, Dalila Trupiano. (2021). In-depth study to decipher mechanisms underlying Arabidopsis thaliana tolerance to metal(loid) soil contamination in association with biochar and/or bacteria. Environmental and Experimental Botany, 182, p.104335. https://doi.org/10.1016/j.envexpbot.2020.104335.

22. Marcin Sajdak, Artur Majewski, Francesca Di Gruttola, Grzegorz Gałko, Edyta Misztal, Michał Rejdak, Andreas Hornung, Miloud Ouadi. (2023). Evaluation of the Feasibility of Using TCR-Derived Chars from Selected Biomass Wastes and MSW Fractions in CO2 Sequestration on Degraded and Post-Industrial Areas. Energies, 16(7), p.2964. https://doi.org/10.3390/en16072964.

23. Eliezer A. Reyes Molina, Seonghyun Park, Sunkyu Park, Stephen S. Kelley. (2023). Effective toluene removal from aqueous solutions using fast pyrolysis-derived activated carbon from agricultural and forest residues: Isotherms and kinetics study. Heliyon, 9(5), p.e15765. https://doi.org/10.1016/j.heliyon.2023.e15765.

24. Mohamed Djelilate, Lahouaria Mounia Mansouri, Anas Mami, Abdenour Kheloufi. (2023). Lactic acid bacteria (Leuconostoc mesenteroides) as bioprotective agents against some pathogenic fungi in common bean. Acta Universitatis Sapientiae, Agriculture and Environment, 15(1), p.22. https://doi.org/10.2478/ausae-2023-0003.

25. Farrukh Gul, Irfan Ullah Khan, Susan Rutherford, Zhi-Cong Dai, Guanlin Li, Dao-Lin Du. (2023). Plant growth promoting rhizobacteria and biochar production from Parthenium hysterophorus enhance seed germination and productivity in barley under drought stress. Frontiers in Plant Science, 14 https://doi.org/10.3389/fpls.2023.1175097.

26. Muhammad Nafees, Sami Ullah, Iftikhar Ahmed. (2023). Bioprospecting Biochar and Plant Growth Promoting Rhizobacteria for Alleviating Water Deficit Stress in Vicia faba L.. Gesunde Pflanzen, 75(6), p.2563. https://doi.org/10.1007/s10343-023-00875-8.

27. Shahin Imran, Prosenjit Sarker, Md. Najmol Hoque, Newton Chandra Paul, Md. Asif Mahamud, Jotirmoy Chakrobortty, Md. Tahjib-Ul-Arif, Arafat Abdel Hamed Abdel Latef, Mirza Hasanuzzaman, Mohammad Saidur Rhaman, Zakaria Solaiman. (2022). Biochar actions for the mitigation of plant abiotic stress. Crop & Pasture Science, 74(2), p.6. https://doi.org/10.1071/CP21486.

Dimensions

PlumX

Visitas a la página del resumen del artículo

2893

Descargas

Los datos de descargas todavía no están disponibles.