
Publicado
AMMONIA TOXICITY AFFECT CATIONS UPTAKE AND GROWTH IN PAPAYA PLANTS INCLUSIVE WITH SILICON ADDITION
TOXICIDAD AMONIACAL AFECTA LA ABSORCIÓN DE CATIONES Y EL CRECIMIENTO DE PLANTAS DE PAPAYA INCLUSIVE CON ADICION DE SILICIO
TOXICIDADE AMONIACAL AFEITA A ABSORÇÃO DE CÁTIONS E A PRODUÇÃO DE MASSA SECA EM PLANTAS DE MAMAO INDEPENDENTEMENTE DA ADIÇÃO DE SILÍCIO
DOI:
https://doi.org/10.15446/abc.v25n3.79490Palabras clave:
Carica papaya, biomass, phytotoxicity, nitrogen, nutrients (en)Carica papaya L., biomasa, fitotoxicidad, nitrógeno, nutrientes (es)
Carica papaya L, elemento benéfico, fitotoxicidade, nitrogênio, nutrientes (pt)
Descargas
High ammonia (NH4+) concentration can exert stress on many plants, which causes nutritional disorders and reduction on plant growth. However, depending on the intensity of the stress, it may be attenuated by silicon. In this work, the response of impact of cations and silicon accumulations and plant growth in cultivated papaya plants was investigated under different toxic ammonia concentrations regardless of the presence of silicon (Si). The experiment was conducted at the Universidade Estadual Paulista (UNESP) with papaya seedlings, variety ‘Grupo Formosa’ (Calimosa híbrida 01), grown in a glass greenhouse, in 1.7 dm3pots filled with pine and coconut fiber-based substrate. The experimental design was a randomized block design, in a 5 × 2 factorial arrangement. There were five ammonium concentrations: 10, 20, 40, 80, and 100 mmol L-1that were delivered via nutrient solution, in the absence and presence of Si (2 mmol L-1), with five replicates. After 31 days of growth, the cations and silicon accumulations in the shoot, plant height, stem diameter, root, and shoot dry matter were evaluated. Results revealed that increased ammonia concentration showed toxicity in papaya plants and stronger reductions in Ca, Mg, K and Si accumulations, plant heights, stem diameters, and root and shoot dry matter production, even when silicon was present and with greater effects on the shoot dry matter (87 %) than that of the roots (13 %).
Las altas concentraciones de amonio (NH4+) pueden ejercer estrés en las plantas cultivadas, lo que causa trastornos nutricionales y reducción del crecimiento. Sin embargo, dependiendo de la intensidad del estrés, este puede atenuarse mediante el silicio (Si). En este trabajo, se investigó la respuesta de la acumulación de cationes y silicio y el crecimiento de plantas de papaya cultivadas en diferentes concentraciones tóxicas de amonio independientemente de la presencia de silicio. El experimento se realizó en la Universidade Estadual Paulista (UNESP), con plántulas de papaya, variedad Grupo Formosa (Calimosa híbrida 01), cultivadas en invernadero, en macetas de 1,7 dm3, rellenas con sustrato a base de fibra de pino y coco. El diseño experimental fue en bloques al azar, en esquema factorial 5×2, con cinco concentraciones de amonio 10, 20, 40, 80 y 100 mmol L-1, en la ausencia y presencia de Si (2 mmol L-1), con cinco repeticiones. A los 31 días posteriores del inicio de los tratamientos, se evaluó la acumulación de calcio, magnesio, nitrógeno, potasio y silicio, altura de la planta, diámetro del tallo y la materia seca de la raíz y los brotes. Los resultados revelaron que el aumento de la concentración de amonio mostró toxicidad en plantas de papaya y una reducción en la acumulación de calcio, magnesio, potasio y silicio, la altura de la planta, diámetro del tallo y la producción de materia seca de raíces y brotes, aunque el silicio esté presente, con mayor afectación en la materia seca de los brotes (87 %) que en las raíces (13 %).
O excesso de amônio pode ocasionar desordens nutricionais às plantas de mamão especialmente no acúmulo diferencial de matéria seca da parte aérea e raiz e no acúmulo de cátions. No entanto, o estresse dependendo da sua intensidade, pode ser atenuado pelo elemento benéfico silício, mas existem dúvidas sobre esses efeitos. Objetivou-se avaliar o desenvolvimento, acúmulo de cátions e do silício em mudas de mamoeiro em função da adição do silício na solução nutritiva sob estresse amoniacal. O experimento foi realizado na Universidade Estadual Paulista (UNESP), com mudas de mamoeiro, variedade do Grupo Formosa (Calimosa híbrido 01), cultivadas em casa de vegetação em vasos de 1,7 dm³ preenchidos com substrato à base de pinus e fibra de coco. O delineamento experimental utilizado foi em blocos casualizados em esquema fatorial 5x2, sendo cinco concentrações de amônio (10; 20; 40; 80 e 100 mmol L-1), na ausência e na presença de Si (2mmol L-1), com cinco repetições. Aos 31 dias após a aplicação dos tratamentos foram avaliadas a altura das plantas, diâmetro do caule, índice de cor verde, matéria seca da raiz e parte aérea, acúmulo de cálcio, magnésio, nitrogênio, potássio e silício nas folhas. Os resultados revelaram que o aumento da concentração de amônio mostrou toxicidade em plantas de mamoeiro e redução no acúmulo de cálcio, magnésio, potássio e silício, altura da planta, diâmetro do caule e produção de matéria seca de raízes e brotos, embora o silício esteja presente, com maior afetação na matéria seca da parte aérea (87%) do que nas raízes (13%).
Referencias
Ahmad A, Mohd S, Ismail MR, Yusop MK, Mahmood M. Effects of nitrogen forms on the growth and ionic content of lowland cauliflower under tropical greenhouse. Acta Hortic. 2006; 710:383–390. Doi:https://doi.org/10.17660/ActaHortic.2006.710.46
Ariz I, Artola E, Asensio AC, Cruchaga S, Aparicio-Tejo PM, Moran JF. High irradiance increases NH4+ tolerance in Pisum sativum: Higher carbon and energy availability improve ion balance but not N assimilation. J Plant Physiol. 2011;168(10):1009–1015. Doi:https://doi.org/10.1016/j.jplph.2010.11.022
Ávila F, Pereira D, Faquin V, Lopes J, Ramos SJ. Interação entre silício e nitrogênio em arroz cultivado sob solução nutritiva. Rev Cienc Agron. 2010;10(2):184–190. Doi:https://doi.org/10.1590/S1806-66902010000200003
Barreto R, Schiavon Júnior AA, Maggio MA, de Mello Prado R. Silicon alleviates ammonium toxicity in cauliflower and in broccoli. Sci Hortic. 2017;225:743–750. Doi:https://doi.org/10.1016/J.SCIENTA.2017.08.014
Barreto RF, Prado RM, Leal AJF, Troleis MJB, Junior GBS, Monteiro CC, et al. Mitigation of ammonium toxicity by silicon in tomato depends on the ammonium concentration. Acta Agric Scand. 2016;66(6):483–488. Doi:https://doi.org/10.1080/09064710.2016.1178324
Bataglia OC, Teixeira JPF, Furlani PR, Furlani AMC, Gallo JR. Métodos de análise química de plantas. 1st ed. Campinas: Instituto Agronômico de Campinas; 1983.
Bittsánszky A, Pilinszky K, Gyulai G, Komives T. Overcoming ammonium toxicity. Plant Sci. 2015;231:184–190. Doi:https://doi.org/10.1016/J.PLANTSCI.2014.12.005
Borgognone D, Rouphael Y, Cardarelli M, Rea E. Effect of nitrogen form and nutrient solution pH on growth and mineral composition of self-grafted and grafted tomatoes. Sci Hortic. 2013;149:61–69. Doi:https://doi.org/10.1016/J.SCIENTA.2012.02.012
Britto DT, Kronzucker HJ. NH4+ toxicity in higher plants: a critical review. J Plant Physiol. 2002;159(6):567–584. Doi:https://doi.org/10.1078/0176-1617-0774
Britto DT, Siddiqi MY, Glass AD, Kronzucker HJ. Futile transmembrane NH4(+) cycling: a cellular hypothesis to explain ammonium toxicity in plants. Proc Natl Acad Sci USA. 2001;98(7):4255–4258. Doi:https://doi.org/10.1073/pnas.061034698
Bybordi A. Effect of ascorbic acid and silicium on photosynthesis, antioxidant enzyme activity, and fatty acid contents in canola exposure to salt stress. J Integr Agric. 2012;11(10):1610–1620. Doi:https://doi.org/10.1016/S2095-3119(12)60164-6
Bybordi A. Influence of NO3:NH4 ratios and silicon on growth, nitrate reductase activity and fatty acid composition of canola under saline conditions. African J Agric Res. 2010;5(15):1984–1992. Doi:https://doi.org/10.5897/AJAR09.064
Campos C, de Mello Prado R, Roque C, Neto A, Marques LJ, Chavez A, et al. Use of Silicon in mitigating ammonium toxicity in maize plants. Am J Plant Sci. 2015;6:1780–1784. Doi:https://doi.org/10.4236/ajps.2015.611178
Campos CN, Prado R, Caione G, Neto J, Mingotte L. Silicon and excess ammonium and nitrate in cucumber plants. African J Agric Res. 2016;11(4):276–283. Doi:https://doi.org/10.5897/AJAR2015.10221
Cruz C, Domínguez-Valdivia MD, Aparicio-Tejo PM, Lamsfus C, Bio A, Martins-Loução Ma, et al. Intra-specific variation in pea responses to ammonium nutrition leads to different degrees of tolerance. Environ Exp Bot. 2011;70(2-3):233–243. Doi:https://doi.org/10.1016/J.ENVEXPBOT.2010.09.014
Domínguez-Valdivia MD, Aparicio-Tejo PM, Lamsfus C, Cruz C, Martins-Loução Ma, Moran JF. Nitrogen nutrition and antioxidant metabolism in ammonium-tolerant and -sensitive plants. Physiol Plant. 2008;132(3):359–369. Doi:https://doi.org/10.1111/j.1399-3054.2007.01022.x
Esteban R, Ariz I, Cruz C, Moran JF. Review: Mechanisms of ammonium toxicity and the quest for tolerance. Plant Sci. 2016;248:92–101. Doi:https://doi.org/10.1016/J.PLANTSCI.2016.04.008
Ferreira SG, Botelho R, Duarte C, Ferrari M, Zaluski WL. Desenvolvimento e fitossanidade de ameixeiras tratadas com silício em sistema orgânico. Rev Bras Frutic. 2013;35(4):1059–1065. Available in: http://www.scielo.br/pdf/rbf/v35n4/a17v35n4.pdf
Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol. 1980;31:149–190. Doi:https://doi.org/10.1146/annurev.pp.31.060180.001053
Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. Circ Calif Agric Exp Stn. 1950;347:1–32.
Hodson MJ, White PJ, Mead A, Broadley MR. Phylogenetic variation in the silicon composition of plants. Ann Bot. 2005;96(6):1027–1046. Doi:https://doi.org/10.1093/aob/mci255
Holzschuh M, Bohnen H, Anghinoni I, Pizzolato T, Carmona F, Carlos F. Absorção de nutrientes e crescimento do arroz com suprimento combinado de amônio e nitrato. Rev Bras Cienc Solo. 2011;35:1357–1366. Doi:https://doi.org/10.1590/S0100-06832011000400030
Horchani F, Hajri R, Aschi-Smiti S. Effect of ammonium or nitrate nutrition on photosynthesis, growth, and nitrogen assimilation in tomato plants. J Plant Nutr Soil Sci. 2010;173(4):610–617. Doi:https://doi.org/10.1002/jpln.201000055
Jampeetong A, Brix H, Kantawanichkul S. Response of Salvinia cucullata to high NH4+ concentrations at laboratory scales. Ecotoxicol Environ Saf. 2012;79:69–74. Doi: https://doi.org/10.1016/J.ECOENV.2011.12.003
Kraska JE, Breitenbeck GA. Simple, robust method for quantifying silicon in plant tissue. Commun Soil Sci Plant Anal. 2010;41(17):2075–2085. Doi:https://doi.org/10.1080/00103624.2010.498537
Lawlor DW. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J Exp Bot. 2002;53(370):773–787. Doi:https://doi.org/10.1093/jexbot/53.370.773
Li B, Li G, Kronzucker HJ, Baluška F, Shi W. Ammonium stress in Arabidopsis: signaling, genetic loci, and physiological targets. Trends Plant Sci. 2014;19(2):107–114. Doi:https://doi.org/10.1016/J.TPLANTS.2013.09.004
Liang Y, Si J, Römheld V. Silicon uptake and transport is an active process in Cucumis sativus. New Phytol. 2005;167(3):797–804. Doi:https://doi.org/10.1111/j.1469-8137.2005.01463.x
Liang Y, Sun W, Zhu YG, Christie P. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environ Pollut. 2007;147(2):422–428. Doi:https://doi.org/10.1016/j.envpol.2006.06.008
Malavolta E, Vitti GC, Oliveira SA. Avaliação do estado nutricional das plantas: princípios e aplicações. 2nd ed. Piracicaba: POTAFOS; 1997.
Marscherner P. Mineral nutrition of higher plants. 3 ed. London: Academic Press Elsevier; 2012. 651 p.
Mauad M, Grassi Filho H, Crusciol CAC, Corrêa JC. Teores de silício no solo e na planta de arroz de terras altas com diferentes doses de adubação silicatada e nitrogenada. Rev Bras Cienc Solo. 2003;27(5):867–873. Doi:https://doi.org/10.1590/S0100-06832003000500011
Mendoza-Villarreal R, Valdez-Aguilar LA, Sandoval-Rangel A, Robledo-Torres V, Benavides-Mendoza A, Benavides A. Tolerance of Lisianthus to high ammonium levels in rockwool culture. J Plant Nutr. 2015;38(1):73–82. Doi:https://doi.org/10.1080/01904167.2014.920379
Mitani N, Jian FM. Uptake system of silicon in different plant species. J Exp Bot. 2005;56(414):1255–1261. Doi:https://doi.org/10.1093/jxb/eri121
Nasraoui-Hajaji A, Gouia H. Photosynthesis sensitivity to NH4+-N change with nitrogen fertilizer type. Plant, Soil Environ. 2014;60(6):274–279. Doi:https://doi.org/10.17221/7418-PSE
Neto J, Pereira W, Cavalcanti L, Araújo R, de Lacerda J. Produtividade e qualidade de frutos de mamoeiro ‘Sunrise solo’ em função de doses de nitrogênio e boro. Semin Cienc Agrárias. 2011;32(1):69–80. Doi: https://doi.org/10.5433/1679-0359.2011v32n1p69
Olivera D, Prado R de M, Lizcano R, Santos LC, Calero A, Theodore Nedd LL, et al. Silicon supplementation alleviates ammonium toxicity in sugar beet (Beta vulgaris L.). J Soil Sci Plant Nutr. 2019;19(2):413–419. Doi:https://doi.org/10.1007/s42729-019-00043-w
Olivera D, Prado R, Lizcano R, Nascimento L, Peña K. Response of radish seedlings (Raphanus sativus L.) to different concentrations of ammoniacal nitrogen in absence and presence of silicon. Agron Colomb. 2017;35(2):198–204. Doi:https://doi.org/10.15446/agron.colomb.v35n2.62772
Prado RM. Nutrição de Plantas. 2nd ed. São Paulo, Brazil: UNESP; 2020.
Rogato A, D’Apuzzo E, Barbulova A, Omrane S, Parlati A, Carfagna S, et al. Characterization of a developmental root response caused by external ammonium supply in Lotus japonicus. Plant Physiol. 2010;154(2):784–795. Doi:https://doi.org/10.1104/pp.110.160309
Silva P, Lima do Couto J, Santos A. Absorção dos íons amônio e nitrato e seus efeitos no desenvolvimento do girassol em solução nutritiva. Rev Biol Cienc Terra. 2010;10(2):97–104. Available in: https://www.redalyc.org/pdf/500/50016922011.pdf
Su S, Zhou Y, Qin JG, Wang W, Yao W, Song L. Physiological responses of Egeria densa to high ammonium concentration and nitrogen deficiency. Chemosphere. 2012;86(5):538–545. Doi:https://doi.org/10.1016/J.CHEMOSPHERE.2011.10.036
Szczerba MW, Britto DT, Balkos KD, Kronzucker HJ. Alleviation of rapid, futile ammonium cycling at the plasma membrane by potassium reveals K+-sensitive and insensitive components of NH4+ transport. J Exp Bot. 2008;59(2):303–313. Doi:https://doi.org/10.1093/jxb/erm309
Ten Hoopen F, Cuin TA, Pedas P, Hegelund JN, Shabala S, Schjoerring JK, et al. Competition between uptake of ammonium and potassium in barley and Arabidopsis roots: molecular mechanisms and physiological consequences. J Exp Bot. 2010;61(9):2303–2315. Doi:https://doi.org/10.1093/jxb/erq057
Von Wiren N, Lauter F-R, Ninnemann O, Gillissen B, Walch-Liu P, Engels C, et al. Differential regulation of three functional ammonium transporter genes by nitrogen in root hairs and by light in leaves of tomato. Plant J. 2000;21(2):167–175. Doi:https://doi.org/10.1046/j.1365-313x.2000.00665.x
Wang C, Zhang SH, Wang PF, Li W, Lu J. Effects of ammonium on the antioxidative response in Hydrilla verticillata (L.f.) Royle plants. Ecotoxicol Environ Saf. 2010;73(2):189–195. Doi:https://doi.org/10.1016/J.ECOENV.2009.08.012
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Jinnan Song, Jingli Yang, Byoung Ryong Jeong. (2022). Alleviation of Ammonium Toxicity in Salvia splendens ‘Vista Red’ with Silicon Supplementation. Toxics, 10(8), p.446. https://doi.org/10.3390/toxics10080446.
2. I. Martos-García, M. Benlloch-González, R. Fernández-Escobar. (2023). Silicon application influences the imbalance between nitrogen and potassium fertilization in young olive plants. Acta Horticulturae, (1375), p.219. https://doi.org/10.17660/ActaHortic.2023.1375.29.
3. Alexander Calero Hurtado, Denise Aparecida Chiconato, Gilmar da Silveira Sousa Junior, Renato de Mello Prado, Kolima Peña Calzada, Dilier Olivera Viciedo. (2024). Silicon Induces Salt Stress Amelioration in Sunflower Plants by Improving Photosynthetic Pigments and Mineral Status. Stresses, 4(4), p.860. https://doi.org/10.3390/stresses4040057.
4. Jayabalan Shilpha, Jinnan Song, Byoung Ryong Jeong. (2023). Ammonium Phytotoxicity and Tolerance: An Insight into Ammonium Nutrition to Improve Crop Productivity. Agronomy, 13(6), p.1487. https://doi.org/10.3390/agronomy13061487.
5. Yu Liu, Shuyuan Wang, Huanyu Yang, Lu Chen, Qingqing Jiang, Xiangfeng Ma, Xiaoshuang Deng, Haixia Wang. (2023). Effects of nitrogen addition on enzyme activity and metabolites related to nitrogen transformation in Suaeda salsa. Acta Physiologiae Plantarum, 45(10) https://doi.org/10.1007/s11738-023-03601-z.
6. Milton Garcia Costa, Renato de Mello Prado, Luiz Fabiano Palaretti, Jonas Pereira de Souza Júnior. (2024). The effect of abiotic stresses on plant C:N:P homeostasis and their mitigation by silicon. The Crop Journal, 12(2), p.340. https://doi.org/10.1016/j.cj.2023.11.012.
7. Ali Malakshahi Kurdestani, Davide Francioli, Reiner Ruser, Alessandro Piccolo, Niels Julian Maywald, Xinping Chen, Torsten Müller. (2024). Optimizing nitrogen fertilization in maize: the impact of nitrification inhibitors, phosphorus application, and microbial interactions on enhancing nutrient efficiency and crop performance. Frontiers in Plant Science, 15 https://doi.org/10.3389/fpls.2024.1451573.
8. Ali Alfalahi, Saba Wais Al-Muselehi, Fadhl Ali S. Al-Nozaily, Abdulrahman Ali Ahmed Al-Eryani, Hassan Mahdi, Guangcan Zhu. (2023). The role of regular evaluation of wastewater quality in minimizing health consequences due to wastewater reuse in irrigation. Arabian Journal of Geosciences, 16(2) https://doi.org/10.1007/s12517-023-11214-6.
9. Miftahul Choiron, Seishu Tojo. (2023). The effect of hot compressed water on ion released of a wasted biomass treatment. THE 5th INTERNATIONAL CONFERENCE ON AGRICULTURE AND LIFE SCIENCE 2021 (ICALS 2021): “Accelerating Transformation in Industrial Agriculture Through Sciences Implementation”. THE 5th INTERNATIONAL CONFERENCE ON AGRICULTURE AND LIFE SCIENCE 2021 (ICALS 2021): “Accelerating Transformation in Industrial Agriculture Through Sciences Implementation”. 2583, p.060013. https://doi.org/10.1063/5.0116208.
10. Gilmar da Silveira Sousa Junior, Alexander Calero Hurtado, Jonas Pereira de Souza Junior, Renato de Mello Prado, Marisa de Cássia Piccolo, Durvalina Maria Mathias Dos Santos. (2022). Beneficial Role of Silicon on Regulating C, N, and P Stoichiometric Homeostasis and the Growth of Sugarcane Seedlings under Aluminum Toxicity. Journal of Soil Science and Plant Nutrition, 22(4), p.4138. https://doi.org/10.1007/s42729-022-01013-5.
11. Gilmar da Silveira Sousa Junior, Alexander Calero Hurtado, Rita de Cassia Alves, Eduardo Custodio Gasparino, Durvalina Maria Mathias dos Santos. (2024). Silicon attenuates aluminum toxicity in sugarcane plants by modifying growth, roots morphoanatomy, photosynthetic pigments, and gas exchange parameters. Scientific Reports, 14(1) https://doi.org/10.1038/s41598-024-53537-8.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2020 Acta Biológica Colombiana

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. La aceptación de manuscritos por parte de la revista implicará, además de su edición electrónica de acceso abierto bajo licencia Attribution-NonCommercial-ShareAlike 4.0 (CC BY NC SA), la inclusión y difusión del texto completo a través del repositorio institucional de la Universidad Nacional de Colombia y en todas aquellas bases de datos especializadas que el editor considere adecuadas para su indización con miras a incrementar la visibilidad de la revista.
2. Acta Biológica Colombiana permite a los autores archivar, descargar y compartir, la versión final publicada, así como las versiones pre-print y post-print incluyendo un encabezado con la referencia bibliográfica del articulo publicado.
3. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
4. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos institucionales, en su página web o en redes sociales cientificas como Academia, Researchgate; Mendelay) lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).