Publicado

2021-05-28

ARABIDOPSIS MUESTRA RESISTENCIA NO-HOSPEDERO CONSTITUTIVA CONTRA Xanthomonas phaseoli pv. manihotis

Arabidopsis shows non-host constitutive resistance against Xanthomonas phaseoli pv. manihotis

DOI:

https://doi.org/10.15446/abc.v26n3.83077

Palabras clave:

yuca, inmunidad vegetal, barreras físicas, reconocimiento., bacteriosis, resistencia (es)
cassava, physical barriers, recognition, blight, resistance, plant immunity (en)

Descargas

Autores/as

La bacteriosis vascular de la yuca, causada por la bacteria gram negativa Xanthomonas phaseoli pv. manihotis (Xpm), anteriormente conocida como Xanthomonas axonopodis pv. manihotis, es la principal enfermedad bacteriana que compromete su producción. Con la meta de generar una resistencia durable y de amplio espectro a la bacteriosis es posible explotar los mecanismos naturales presentes en plantas no-hospedero. Arabidopsis es una planta modelo extensamente estudiada, la cual es no-hospedero de Xpm. La meta de este estudio fue determinar si la resistencia no-hospedero de Arabidopsis es consecuencia de la presencia de barreras físicas o si esta depende de determinantes genéticos. En este trabajo se evaluó la capacidad de plantas de Arabidopsis de responder a la inoculación con Xpm. Ninguno de los ocho ecotipos de Arabidopsis evaluados mostraron una respuesta hipersensible a la inoculación con ocho diferentes cepas de Xpm. Aunque no se identificó la presencia de especies reactivas de oxígeno si se encontró un bloqueo en el crecimiento de Xpm en las plantas de Arabidopsis. En conjunto, los resultados aquí presentados sugieren que Arabidopsis no está activando una respuesta contra Xpm y que la resistencia observada puede ser consecuencia de las barreras físicas presentes en Arabidopsis que Xpm no es capaz de superar.

Cassava bacterial blight (CBB), caused by the gram-negative bacteria Xanthomonas phaseoli pv. manihotis (Xpm), previously known as Xanthomonas axonopodis pv. manihotis, is the main bacterial disease compromising cassava production. With the aim to generate durable and broad-spectrum resistance to CBB is possible to exploit the natural mechanism present in non-host plants. Arabidopsis is an extensively studied model plant, which is a non-host of Xpm. The aim of this study was to determinate if the Arabidopsis non-host resistance is a consequence of physical barriers or if it depends on genetic determinants. In this work we evaluated the ability of Arabidopsis plants to respond after Xpm inoculation. None of the eight Arabidopsis ecotypes showed a hypersensitive response after inoculation with eight different Xpm strains. Although reactive oxygen species (ROS) production was not present, impairment in Xpm proliferation was found. These results suggest that Arabidopsis is not activating an immunity response against Xpm and the resistance might be a consequence of physical barriers present in Arabidopsis that Xpm is not able to overcome.

Referencias

Albert M, Fürst U. Quantitative Detection of Oxidative Burst upon Activation of Plant Receptor Kinases. En: Aalen R, editor. Plant Receptor Kinases. Methods in Molecular Biology, vol 1621;2017. New York: Humana Press. 2017;1621:69-76. Doi: https://doi.org/10.1007/978-1-4939-7063-6_7 DOI: https://doi.org/10.1007/978-1-4939-7063-6_7

Boher B, Verdier V. Cassava bacterial blight in Africa. The state of knowledge and implications for designing control strategies. Afr Crop Sci J. 1994;2(1):5.

Bolwell GP. Role of active oxygen species and NO in plant defence responses. Curr Opin Plant Biol. 1999;2(4):287-294. Doi: https://doi.org/10.1016/S1369-5266(99)80051-X DOI: https://doi.org/10.1016/S1369-5266(99)80051-X

Constantin EC, Cleenwerck I, Maes M, Baeyen S, Van Malderghem, De Vos P, Cottyn B. Genetic characterization of strains named as Xanthomonas axonopodis pv. dieffenbachiae leads to a taxonomic revision of the X. axonopodis species complex, Plant Pathol. 2016;65:792–806. DOI: https://doi.org/10.1111/ppa.12461

Cook DE, Mesarich CH, Thomma BPHJ. Understanding plant immunity as a surveillance system to detect invasion. Annu Rev Phytopathol. 2015;53:541-63. Doi: https://doi.org/10.1146/annurev-phyto-080614-120114 DOI: https://doi.org/10.1146/annurev-phyto-080614-120114

Ellis J. Insights into Nonhost Disease Resistance: Can They Assist Disease Control in Agriculture? Plant Cell. 2006; 18(3):523-528. Doi: https://doi.org/10.1105/tpc.105.040584 DOI: https://doi.org/10.1105/tpc.105.040584

FAO. Save and Grow: Cassava A guide to sustainable production intensification. 2013.

García AV, Charrier A, Schikora A, Bigeard J, Pateyron S, de Tauzia-Moreau M, et al. Salmonella enterica flagellin is recognized via FLS2 and activates PAMP-triggered immunity in Arabidopsis thaliana. Mol Plant. 2014;7(4):657-674. Doi: https://doi.org/10.1093/mp/sst145 DOI: https://doi.org/10.1093/mp/sst145

Ham J, Kim M, Lee S, Mackey D. Layered basal defenses underlie non-host resistance of Arabidopsis to Pseudomonas syringae pv phaseolicola. Plant J. 2007;51:604-616. DOI: https://doi.org/10.1111/j.1365-313X.2007.03165.x

Heath MC. Nonhost resistance and nonspecific plant defenses Curr Opin Plant Biol. 2000;3(4):315-319. Doi: https://doi.org/10.1016/S1369-5266(00)00087-X DOI: https://doi.org/10.1016/S1369-5266(00)00087-X

Jehle AK, Lipschis M, Albert M, Fallahzadeh-Mamaghani V, Fürst U, Mueller K, Felix G. The receptor-like protein ReMAX of Arabidopsis detects the microbe-associated molecular pattern eMax from Xanthomonas. Plant Cell 2013;25:2330-2340. Doi: https://doi.org/10.1105/tpc.113.110833 DOI: https://doi.org/10.1105/tpc.113.110833

Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, van Esse HP, et al. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat Biotech. 2010;28:365-369. Doi: https://doi.org/10.1038/nbt.1613 DOI: https://doi.org/10.1038/nbt.1613

López CE, Bernal AJ Cassava Bacterial Blight : Using Genomics for the Elucidation and Management of an Old Problem. Trop Plant Biol. 2012;5:117–126. Doi: https://doi.org/10.1007/s12042-011-9092-3 DOI: https://doi.org/10.1007/s12042-011-9092-3

Lorang J, Kidarsa T, Bradford CS, Gilbert B, Curtis M, Tzeng S-C, et al. Tricking the Guard: Exploiting Plant Defense for Disease Susceptibility. Science. 2012;338:659-662. Doi: https://doi.org/10.1126/science.1226743 DOI: https://doi.org/10.1126/science.1226743

Ma W, Wang Y, McDowell J. Focus on Effector-Triggered Susceptibility. Mol Plant Microbe Interact. 2018;31(1):5. Doi: https://doi.org/10.1094/MPMI-11-17-0275-LE DOI: https://doi.org/10.1094/MPMI-11-17-0275-LE

McCallum EJ, Anjanappa RB, Gruissem W. Tackling agriculturally relevant diseases in the staple crop cassava (Manihot esculenta). Curr Opin Plant Biol 2017;38:50-58. Doi: https://doi.org/10.1016/j.pbi.2017.04.008 DOI: https://doi.org/10.1016/j.pbi.2017.04.008

Mendes B, Cardoso S, Boscariol-Camargo R, Cruz R, Mourão A, Bergamin A. Reduction in susceptibility to Xanthomonas axonopodis pv citri in transgenic Citrus sinensis expressing the rice Xa21 gene. Plant Pathol. 2010;59:68–75. DOI: https://doi.org/10.1111/j.1365-3059.2009.02148.x

Meyer D, Lauber E, Roby D, Arlat M, Kroj T. Optimization of pathogenicity assays to study the Arabidopsis thaliana-Xanthomonas campestris pv campestris pathosystem. Mol Plant Pathol. 2005; 6:327-333. DOI: https://doi.org/10.1111/j.1364-3703.2005.00287.x

Monteiro F, Nishimura MT. Structural Functional and Genomic Diversity of Plant NLR Proteins: An Evolved Resource for Rational Engineering of Plant Immunity. Annu Rev Phytopathol. 2018;56:243-267. Doi: https://doi.org/10.1146/annurev-phyto-080417-045817 DOI: https://doi.org/10.1146/annurev-phyto-080417-045817

Mysore K, Ryu C-M. Nonhost resistance: how much do we know? Trends Plant Sci. 2004;9(2):97-104. Doi: https://doi.org/10.1016/j.tplants.2003.12.005 DOI: https://doi.org/10.1016/j.tplants.2003.12.005

Peng Y, van Wersch R, Zhang Y. Convergent and Divergent Signaling in PAMP-Triggered and Effector-Triggered Immunity. Mol Plant Microbe Interact. 2018;31(4):403-409. Doi: https://doi.org/10.1094/MPMI-06-17-0145-CR DOI: https://doi.org/10.1094/MPMI-06-17-0145-CR

Saijo Y, Loo EP, Yasuda S. Pattern recognition receptors and signaling in plant-microbe interactions. Plant J. 2018;93(4):592-613. DOI: https://doi.org/10.1111/tpj.13808

Seo S, Matthews KR. Influence of the plant defense response to Escherichia coli O157:H7 cell surface structures on survival of that enteric pathogen on plant surfaces. Appl Environ Microbiol. 2012;78(16):5882-5889. Doi: https://doi.org/10.1128/aem.01095-12 DOI: https://doi.org/10.1128/AEM.01095-12

Stam R, Mantelin S, McLellan H, Thilliez G. The role of effectors in nonhost resistance to filamentous plant pathogens. Front Plant Sci. 2014;5:582. Doi: https://doi.org/10.3389/fpls.2014.00582 DOI: https://doi.org/10.3389/fpls.2014.00582

Trujillo CA, Ochoa JC, Mideros MF, Restrepo S, López C, Bernal A. A Complex Population Structure of the Cassava Pathogen

Xanthomonas axonopodis pv. manihotis in Recent Years in the Caribbean Region of Colombia. Microb Ecol. 2014;68:155–167. Doi: https://doi.org/10.1007/s00248-014-0411-8 DOI: https://doi.org/10.1007/s00248-014-0411-8

Xu RQ, Blanvillain S, Feng J-X, Jiang BL, Li X-Z, Wei H-Y, et al. AvrAC(Xcc8004) a type III effector with a leucine-rich repeat domain from Xanthomonas campestris pathovar campestris confers avirulence in vascular tissues of Arabidopsis thaliana ecotype Col-0. J Bacteriol. 2008;190:343-355. Doi: https://doi.org/10.1128/JB.00978-07 DOI: https://doi.org/10.1128/JB.00978-07

Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbert S. A maize resistance gene functions against bacterial streak disease in rice. Proc Natl Acad Sci USA. 2005;102(43):15383-15388 Doi: https://doi.org/10.1073/pnas.0503023102 DOI: https://doi.org/10.1073/pnas.0503023102

Ziska LH, Runion GB, Tomecek M, Prior SA, Torbet HA, Sicher R. An evaluation of cassava sweet potato and field corn as potential carbohydrate sources for bio-ethanol production in Alabama and Maryland. Biomass Bioenerg. 2009; 33(11):1503-150. Doi: https://doi.org/10.1016/j.biombioe.2009.07.014 DOI: https://doi.org/10.1016/j.biombioe.2009.07.014

Cómo citar

APA

Hurtado, P., Romero, D. y López Carrascal, C. E. (2021). ARABIDOPSIS MUESTRA RESISTENCIA NO-HOSPEDERO CONSTITUTIVA CONTRA Xanthomonas phaseoli pv. manihotis . Acta Biológica Colombiana, 26(3), 345–351. https://doi.org/10.15446/abc.v26n3.83077

ACM

[1]
Hurtado, P., Romero, D. y López Carrascal, C.E. 2021. ARABIDOPSIS MUESTRA RESISTENCIA NO-HOSPEDERO CONSTITUTIVA CONTRA Xanthomonas phaseoli pv. manihotis . Acta Biológica Colombiana. 26, 3 (may 2021), 345–351. DOI:https://doi.org/10.15446/abc.v26n3.83077.

ACS

(1)
Hurtado, P.; Romero, D.; López Carrascal, C. E. ARABIDOPSIS MUESTRA RESISTENCIA NO-HOSPEDERO CONSTITUTIVA CONTRA Xanthomonas phaseoli pv. manihotis . Acta biol. Colomb. 2021, 26, 345-351.

ABNT

HURTADO, P.; ROMERO, D.; LÓPEZ CARRASCAL, C. E. ARABIDOPSIS MUESTRA RESISTENCIA NO-HOSPEDERO CONSTITUTIVA CONTRA Xanthomonas phaseoli pv. manihotis . Acta Biológica Colombiana, [S. l.], v. 26, n. 3, p. 345–351, 2021. DOI: 10.15446/abc.v26n3.83077. Disponível em: https://revistas.unal.edu.co/index.php/actabiol/article/view/83077. Acesso em: 17 ene. 2025.

Chicago

Hurtado, Paola, Danilo Romero, y Camilo Ernesto López Carrascal. 2021. «ARABIDOPSIS MUESTRA RESISTENCIA NO-HOSPEDERO CONSTITUTIVA CONTRA Xanthomonas phaseoli pv. manihotis ». Acta Biológica Colombiana 26 (3):345-51. https://doi.org/10.15446/abc.v26n3.83077.

Harvard

Hurtado, P., Romero, D. y López Carrascal, C. E. (2021) «ARABIDOPSIS MUESTRA RESISTENCIA NO-HOSPEDERO CONSTITUTIVA CONTRA Xanthomonas phaseoli pv. manihotis », Acta Biológica Colombiana, 26(3), pp. 345–351. doi: 10.15446/abc.v26n3.83077.

IEEE

[1]
P. Hurtado, D. Romero, y C. E. López Carrascal, «ARABIDOPSIS MUESTRA RESISTENCIA NO-HOSPEDERO CONSTITUTIVA CONTRA Xanthomonas phaseoli pv. manihotis », Acta biol. Colomb., vol. 26, n.º 3, pp. 345–351, may 2021.

MLA

Hurtado, P., D. Romero, y C. E. López Carrascal. «ARABIDOPSIS MUESTRA RESISTENCIA NO-HOSPEDERO CONSTITUTIVA CONTRA Xanthomonas phaseoli pv. manihotis ». Acta Biológica Colombiana, vol. 26, n.º 3, mayo de 2021, pp. 345-51, doi:10.15446/abc.v26n3.83077.

Turabian

Hurtado, Paola, Danilo Romero, y Camilo Ernesto López Carrascal. «ARABIDOPSIS MUESTRA RESISTENCIA NO-HOSPEDERO CONSTITUTIVA CONTRA Xanthomonas phaseoli pv. manihotis ». Acta Biológica Colombiana 26, no. 3 (mayo 28, 2021): 345–351. Accedido enero 17, 2025. https://revistas.unal.edu.co/index.php/actabiol/article/view/83077.

Vancouver

1.
Hurtado P, Romero D, López Carrascal CE. ARABIDOPSIS MUESTRA RESISTENCIA NO-HOSPEDERO CONSTITUTIVA CONTRA Xanthomonas phaseoli pv. manihotis . Acta biol. Colomb. [Internet]. 28 de mayo de 2021 [citado 17 de enero de 2025];26(3):345-51. Disponible en: https://revistas.unal.edu.co/index.php/actabiol/article/view/83077

Descargar cita

CrossRef Cited-by

CrossRef citations1

1. Taíse Conceição Rodrigues, Itamara Bomfim Gois, Roberta Pereira Miranda Fernandes, Arie Fitzgerald Blank, Rafael Donizete Dutra Sandes, Maria Terezinha Santos Leite Neta, Narendra Narain, Maria de Fátima Arrigoni-Blank. (2023). Chemical characterization and antimicrobial activity of essential oils from Croton grewioides Baill. accessions on the phytopathogen Xanthomonas campestris pv. campestris. Pesticide Biochemistry and Physiology, 193, p.105454. https://doi.org/10.1016/j.pestbp.2023.105454.

Dimensions

PlumX

Visitas a la página del resumen del artículo

474

Descargas

Los datos de descargas todavía no están disponibles.