Publicado
Influencia de la herbivoría y la apertura de claros sobre el crecimiento total de Brosimum alicastrum (Moraceae)
Influence of herbivory and Gap-openness on whole-plant growth OF Brosimum alicastrum (Moraceae)
DOI:
https://doi.org/10.15446/abc.v26n2.83289Palabras clave:
análisis de crecimiento, bosques tropicales, defoliación, establecimiento de plantas, penetración de luz (es)growth analysis, tropical forests, defoliation, plant establishment, light penetration (en)
Descargas
El crecimiento compensatorio y las defensas vegetales son respuestas para lidiar con la herbivoría y la luz. El estudio de la influencia de los componentes morfo-fisiológicos, de la asignación de biomasa y de la defensa vegetal podría arrojar información que ayude a entender estas respuestas. Se evaluaron los efectos de la herbivoría y la apertura de claros sobre el crecimiento, los componentes morfo-fisiológicos, la asignación de biomasa y las defensas químicas y físicas en plántulas de Brosimum alicastrum en una selva mediana subcaducifolia. Se utilizó un diseño anidado con sitios de sotobosque y claros (n = 3 en cada uno) y dentro de ellos plántulas sometidas a tres tratamientos de herbivoría: control (n = 10), simulada (n = 10) y natural (n = 10). Se registró a lo largo de seis meses la influencia de la herbivoría sobre el crecimiento (biomasa, área foliar, altura, diámetro y producción de hojas), la producción de fenoles y la dureza foliar. Se halló un crecimiento compensatorio (todas las variables de crecimiento) con la herbivoría natural, subcompensatorio (biomasa, altura y diámetro) con la simulada, y sobrecompensatorio (producción de hojas) con la herbivoría natural sólo en claros. Los componentes morfológicos como el cociente del área foliar (LAR) y el área foliar específica (SLA) fueron mayores bajo claros y el fisiológico, como la tasa de asimilación neta (NAR), en sotobosque. La proporción de biomasa en sotobosque fue mayor hacia hojas y tallos y en claros más alta hacia raíces. La herbivoría fue mayor en claros y los fenoles foliares en sotobosque. No se encontró una relación (compromiso) entre las defensas y el crecimiento, sólo una tendencia negativa con los fenoles bajo condiciones limitantes de recursos, como ocurre en el sotobosque.
Referencias
Adler PB, Fajardo A, Kleinhesselink AR, Kraft NJB. Traits-based tests of coexistence mechanisms. Ecol Lett. 2013;16(10):1294-1306. Doi: https://doi.org/10.1111/ele.12157 DOI: https://doi.org/10.1111/ele.12157
Ballina-Gómez HS, Iriarte-Vivar S, Orellana R, Santiago LS. Compensatory growth responses to defoliation and light availability in two native Mexican woody plant species. J Trop Ecol. 2010;26(2):163-171. Doi: https://doi.org/10.1017/S0266467409990514 DOI: https://doi.org/10.1017/S0266467409990514
Ballina-Gómez HS, Iriarte-Vivar S, Orellana R, Santiago LS. Crecimiento, supervivencia y herbivoría de plántulas de Brosimum alicastrum (Moraceae), una especie del sotobosque neotropical. Rev Biol Trop. 2008;56(4):2055-2067. Doi: https://doi.org/10.1551/rbt.v56i4.5779 DOI: https://doi.org/10.15517/rbt.v56i4.5779
Beckage B, Clark JS. Does predation contribute to tree diversity? Oecologia. 2005;143:458–469. Doi: https://doi.org/10.1007/s00442-004-1815-9 DOI: https://doi.org/10.1007/s00442-004-1815-9
Bixenmann RJ, Coley PD, Weinhold, A, Kursar TA. High herbivore pressure favors constitutive over induced defense. Ecol Evol. 2016;6(17):6037-6049. Doi: https://doi.org/10.1002/ece3.2208 DOI: https://doi.org/10.1002/ece3.2208
Blundell AG, Peart DR. Growth strategies of a shade-tolerant tropical tree: the interactive effects of canopy gaps and simulated herbivory. J Ecol. 2001;89(4):608-615. Doi: https://doi.org/10.1046/j.0022-0477.2001.00581.x DOI: https://doi.org/10.1046/j.0022-0477.2001.00581.x
Challenger A, Soberón J. Los ecosistemas terrestres. ed. Capital natural de México: Conocimiento actual de la biodiversidad. Vol. I. , México, D.F: CONABIO; 2008. p. 87-108.
Dahlgren E, Lehtilä K. Tolerance to apical and leaf damage of Raphanus raphanistrum in different competitive regimes. Ecol Evol. 2015;5(22):5193-5202. Doi: https://doi.org/10.1002/ece3.1759 DOI: https://doi.org/10.1002/ece3.1759
de la Cruz M, Dirzo R. A survey of the standing levels of herbivory in seedlings from a Mexican Rain Forest. Biotropica. 1987;19(2):98-106. Doi: https://doi.org/10.2307/2388730 DOI: https://doi.org/10.2307/2388730
Dirzo R. Estudios sobre interacciones planta-herbívoro en Los Tuxtlas, Veracruz. Rev Biol Trop. 1987;35(1):119-131.
Pirk GI, Farji-Brener AG. Can the nutrient-rich soil patches created by leaf-cutting ants favor plant compensation for a foliar damage? A test of the compensatory continuum hypothesis. Plant Ecol. 2013;214(8):1059-1070. Doi: https://doi.org/10.1007/s11258-013-0231-9 DOI: https://doi.org/10.1007/s11258-013-0231-9
Feeny P. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 1970;51(4):565-581. Doi: https://doi.org/10.2307/1934037 DOI: https://doi.org/10.2307/1934037
Gap Light Analyzer: Imaging software to extract canopy structure and gap light transmission indices from true-color fisheye photographs. Version 2.0. Millbrook (NY): Simon Fraser University, Burnaby, BC, and the Institute of Ecosystem Studies; 1999.
Giertych MJ, Karolewski P, Oleksyn J. Carbon allocation in seedlings of deciduous tree species depends on their shade tolerance. Acta Physiol Plant. 2015;37:216. Doi: https://doi.org/10.1007/s11738-015-1965-x DOI: https://doi.org/10.1007/s11738-015-1965-x
Goodale UM, Berlyn GP, Gregoire TG, Tennakoon KU, Ashton MS. Differences in survival and growth among tropical rain forest pioneer tree seedlings in relation to canopy openness and herbivory. Biotropica. 2014;46(2):183-193. Doi: https://doi.org/10.1111/btp.12088 DOI: https://doi.org/10.1111/btp.12088
Gutiérrez-Granados G. Herbivoría y conservación en una selva seca del centro de México. Rev Chapingo Ser Cienc Forest Amb. 2000;6(2):113-117.
Hoekman D. Turning up the heat: temperature influences the relative importance of top-down and bottom up effects. Ecology 2010;91(10):2819-2825. Doi: https://doi.org/10.1890/10-0260-1 DOI: https://doi.org/10.1890/10-0260.1
Hunt R. Basic growth analysis: Plant growth analysis for beginners. London, UK: Unwin Hyman;. 1978. p. 112.
Huot B, Yao J, Montgomery BL, He SY. Growth-Defense Tradeoffs in plants: A balancing act to optimize fitness. Mol Plant. 2014;7(8):1267-1287. Doi: https://doi.org/10.1093/mp/ssu049 DOI: https://doi.org/10.1093/mp/ssu049
Vivar Balderrama SI, Chazdon RL. Light-dependent seedling survival and growth of four tree species in Costa Rican second-growth rain forests. J Trop Ecol. 2005;21(4):383–395. Doi: https://doi.org/10.107/S026646740500235X DOI: https://doi.org/10.1017/S026646740500235X
Koricheva J. Meta-analysis of sources of variation in fitness costs of plant antiherbivore defenses. Ecology. 2002;83(1):176-90. Doi: https://doi.org/10.1890/0012-9658(2002)083[0176:MAOSOV]2.0.CO;2 DOI: https://doi.org/10.1890/0012-9658(2002)083[0176:MAOSOV]2.0.CO;2
Lind EM, Borer E, Seabloom E, Adler P, Bakker JD, Blumenthal DM, et al. Life-history constraints in grassland plant species: a growth-defence trade-off is the norm. Ecol Lett. 2013;16(4):513-521. Doi: https://doi.org/10.1111/ele.12078 DOI: https://doi.org/10.1111/ele.12078
Lloyd KM, Pollock ML, Mason NWH, Lee WG. Leaf trait palatability relationships differ between ungulate species: evidence from cafeteria experiments using nave tussock grasses. N Z J Ecol. 2010;34(2):219-226.
Makkar HSP. Quantification of tannins in tree in and shrub foliage: a laboratory manual. Netherland: Springer, Dordrecht; 2003. p. 49-51. DOI: https://doi.org/10.1007/978-94-017-0273-7_3
Marthews TR, Burslem DFRP, Phillips RT, Mullins CE. Modeling direct radiation and canopy gap regimes in tropical forests. Biotropica. 2008;40(6):676-685. Doi: https://doi.org/10.1111/j.1744-7429.2008.00431.x DOI: https://doi.org/10.1111/j.1744-7429.2008.00431.x
Martínez-Pachón E, Moreno Pallares MI, Cuervo Martínez MA. Herbivoría en plantas de crecimiento rápido y lento de un bosque húmedo tropical de Colombia: una prueba de la hipótesis de disponibilidad de recursos. In: Argenis-Bonilla M, Dirzo R. ed. Interacciones planta-animal: Ecología evolutiva y conservación. Bogotá, Colombia: Universidad Nacional de Colombia; 2010. p. 16-25.
Maschinski J, Whitham TG. The continuum of plant responses to herbivory: the influence of plant association, nutrient availability, and timing. Am Nat. 1989;134(1):1-19. Doi: https://doi.org/10.1086/284962 DOI: https://doi.org/10.1086/284962
Moraes Neto S, Goncalves J, Takaki, Cenci S, Goncalves J. Crescimiento de mudas de algunas espécies arbóreas que ocurrem na mata atlántica, em funcao do nível de luminosidade. Rev Árv. 2000;24(1):35-45.
Norghauer JM, Newbery DM. Herbivore differentially limit the seedlings growth and sapling recruitment of two dominant rain forest trees. Oecologia. 2014;174:459-469. Doi: https://doi.org/10.1007/s00442-013-2769-6 DOI: https://doi.org/10.1007/s00442-013-2769-6
Piña M, Arboleda ME. Efecto de dos ambientes lumínicos en el crecimiento inicial y calidad de plantas de Crescentia cujete. Bioagro. 2010;22(1):61-66.
Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM. Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol. 2012;28:489–521. Doi: https://doi.org/10.1146/annurev-cellbio-092910-154055 DOI: https://doi.org/10.1146/annurev-cellbio-092910-154055
Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Aust J Plant Physiol. 2000;27(6):1191-1191. Doi:https://doi.org/10.1071/PP99173 https://doi.org/10.1071/PP99173_CO DOI: https://doi.org/10.1071/PP99173_CO
Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 2012;193(1):30-50. Doi: https://doi.org/10.1111/j.1469-8137.2011.03952.x DOI: https://doi.org/10.1111/j.1469-8137.2011.03952.x
Price PW, Waring GL, Julkunen-Tiitto R, Tahvanainen J, Mooney HA, Craig TP. Carbon–nutrient balance hypothesis in within-species phytochemical variation of Salix lasiolepis. J Chem Ecol. 1989;15:1117–1131. Doi: https://doi.org/10.1007/BF01014816 DOI: https://doi.org/10.1007/BF01014816
Quero JL, Sterck FJ, Martínez-Vilalta J, Villar R. Water-use strategies of six co-existing Mediterranean woody species during a summer drought. Oecologia. 2011;166:45–57. Doi: https://doi.org/10.1007/s00442-011-1922-3 DOI: https://doi.org/10.1007/s00442-011-1922-3
Quero JL, Villar R, Marañón T, Zamora R, Vega D, Sack L. 2008. Relating leaf photosynthetic rate to whole-plant growth: drought and shade effects on seedlings of four Quercus species. Funct Plant Biol. 35:725–737. Doi: https://doi.org/10.1071/FP08149 DOI: https://doi.org/10.1071/FP08149
Image J. Version 1.37. USA: National Institutes of Health; 1997.
Rego G, Possamai E. Efeito do sombreamento sobre o teor de clorofila e crescimento inicial do Jequitibá-rosa. Pesqui Florest Bras. 2006;53:179-194.
Salgado-Duarte C, Gianoli E. Herbivores modify selection on plant functional traits in a temperate rainforest understory. Am Nat. 2012180(2):E42-E53. Doi: https://doi.org/10.1086/666612 DOI: https://doi.org/10.1086/666612
Sterck FJ, Duursma RA, Pearcy RW, Valladares F, Cieslak M, Weemstra M. Plasticity influencing the light compensation point offsets the specialization for light niches across shrub species in a tropical forest understorey. J Ecol. 2013;101(4):971-80. Doi: https://doi.org/1365-2745-12076 DOI: https://doi.org/10.1111/1365-2745.12076
Statistica. Version 8.0. Tulsa (OK): Stat Soft; 2008.
Stowe KA, Marquis RJ, Hochwender CG, Simms EL. The evolutionary ecology of tolerance to consumer damage. Annu Rev Ecol Syst. 2000;31:565–595. Doi: https://doi.org/10.1146/annurev.ecolsys.31.1.565 DOI: https://doi.org/10.1146/annurev.ecolsys.31.1.565
Temme AA, Liu JC, Cornwell WK, Aerts R, Cornelissen JHC. Hungry and thirsty: Effect of CO2 and limited water availability on plant performance. Flora. 2019;254:188-193. Doi: https://doi.org/10.1016/j.flora.2018.11.006 DOI: https://doi.org/10.1016/j.flora.2018.11.006
Valladares F, Aranda I, Sánchez D. La luz como factor ecológico y evolutivo para las plantas y su interacción con el agua. In: F.
Valladares, ed. Ecología del bosque mediterráneo en un mundo cambiante. Madrid, España: Ministerio de Medio Ambiente (EGRAF); 2004. p:335-369.
Valladares F, Laanisto L, Niinemets Ü, Zavala MA. Shedding light on shade: ecological perspectives of understorey plant life. Plant Ecol Divers. 2016;9(3):237-251. Doi: https://doi.org/10.1080/17550874.2016.1210262 DOI: https://doi.org/10.1080/17550874.2016.1210262
Villar F, Ruíz RJ, Quero J, Poorter H, Valladares F, Marañon T. Tasas de crecimiento en especies leñosas: aspectos funcionales e implicaciones ecológicas. In: Valladares F, editors. Ecología del bosque mediterráneo en un mundo cambiante. Madrid, España: Ministerio de Medio Ambiente (EGRAF); 2008. p: 193-230.
Westoby M, Warton D, Reich PB. The time value of leaf area. Am Nat. 2000;155(5):649-656. Doi: https://doi.org/10.1086/303346 DOI: https://doi.org/10.1086/303346
Zamora-Crescencio P, García-Gil G, Flores-Guido JS, Ortiz JJ. Estructura y composición florística de la selva mediana subcaducifolia en el sur del estado de Yucatán, México. Polibotánica. 2008;26:39-66. DOI: https://doi.org/10.21829/myb.2020.2611899
Züst T, Agrawal AA. Trade-offs between plant growth and defense against insect herbivory: an emerging mechanistic synthesis. Annu Rev Plant Biol. 2017;68:513-534. Doi: https://doi.org/10.1146/annurev-arplant-042916-040856 DOI: https://doi.org/10.1146/annurev-arplant-042916-040856
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Roberto Rafael Ruiz-Santiago, Horacio Salomón Ballina-Gómez, Esaú Ruiz-Sánchez. (2023). CARACTERÍSTICAS MORFOLÓGICAS FOLIARES Y SU RELACIÓN CON LA DEFOLIACIÓN EN TRES ESPECIES DE PLANTAS FORRAJERAS. Acta Biológica Colombiana, 28(1), p.12. https://doi.org/10.15446/abc.v28n1.88402.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2021 Acta Biológica Colombiana
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. La aceptación de manuscritos por parte de la revista implicará, además de su edición electrónica de acceso abierto bajo licencia Attribution-NonCommercial-ShareAlike 4.0 (CC BY NC SA), la inclusión y difusión del texto completo a través del repositorio institucional de la Universidad Nacional de Colombia y en todas aquellas bases de datos especializadas que el editor considere adecuadas para su indización con miras a incrementar la visibilidad de la revista.
2. Acta Biológica Colombiana permite a los autores archivar, descargar y compartir, la versión final publicada, así como las versiones pre-print y post-print incluyendo un encabezado con la referencia bibliográfica del articulo publicado.
3. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
4. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos institucionales, en su página web o en redes sociales cientificas como Academia, Researchgate; Mendelay) lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).