Publicado
YUCA: PAN Y CARNE, UNA ALTERNATIVA POTENCIAL PARA HACER FRENTE AL HAMBRE OCULTA
Cassava: bread and meat, a potential alternative to tackle hidden hunger
DOI:
https://doi.org/10.15446/abc.v26n2.84569Palabras clave:
agricultura, almidón, desnutrición, diversidad, alimentación (es)agriculture, starch, malnutrition, diversity, feeding (en)
Descargas
Uno de los retos que encara la humanidad es asegurar la alimentación y la adecuada nutrición para los cerca de ocho billones de habitantes del planeta. Las raíces de yuca constituyen la cuarta fuente más importante de calorías para la población humana siendo uno de los pilares de la seguridad alimentaria. Las raíces de yuca no poseen atributos nutricionales adecuados. Aunque existen variedades con valores relativamente altos de estos compuestos, sus valores están lejos de los necesarios para asegurar los requerimientos mínimos de la población humana. Las hojas de yuca poseen valores altos de contenido proteico, minerales y vitaminas, por lo que representan una fuente nutricional alternativa. Sin embargo, el consumo de hojas de yuca en América Latina es escaso o nulo como consecuencia de los altos niveles de cianuro que poseen. En algunos países de África y Asia las hojas se consumen a través de diversas recetas que incluye su cocción, eliminando así una gran cantidad del contenido cianógeno. En esta revisión se presenta un panorama general de la importancia nutricional de la yuca, las diferentes estrategias de mejoramiento genético clásico y no convencional destinados a incrementar los contenidos nutricionales de raíces y la importancia de la explotación de la variabilidad intrínseca de la yuca como una fuente de variedades y genes que puedan contribuir a la implementación de estrategias encaminadas a desarrollar materiales con los requerimientos nutricionales adecuados. Finalmente, se presenta el potencial que tienen las hojas de yuca para ser empleadas dentro de programas complementarios destinados a mejorar la calidad nutricional de la población humana.
One of the challenges facing humanity is to ensure food and adequate nutrition for the nearly eight billion inhabitants of the planet. Cassava roots constitute the fourth most important source of calories for the human population, being one of the pillars of food security. Cassava roots do not have adequate nutritional attributes. Although there are varieties with relatively high values of these compounds, these are far from those necessary to ensure the minimum requirements of the human population. Cassava leaves have a high content of protein, minerals, and vitamins, so they represent an alternative nutritional source. However, their consumption in Latin America is scarce due to the high levels of cyanide they possess. In some countries of Africa and Asia, the leaves are consumed through various recipes that include cooking, thus eliminating a large amount of cyanogen content. This review presents an overview of the nutritional importance of cassava, the different strategies of classical and unconventional genetic improvement aimed at increasing the nutritional content of roots, and the importance of exploiting the intrinsic variability of cassava as a source of varieties and genes that can contribute to the development of strategies directed to developing materials with the appropriate nutritional requirements. Finally, the potential of cassava leaves to be used in complementary programs aimed at improving the nutritional quality of the human population is presented.
Referencias
Achidi AU, Ajayi OA, Maziya-Dixon B, Bokanga M. The effect of processing on the nutrient content of cassava (Manihot esculenta Crantz) leaves. J Food Process Preserv. 2008;32(3):486–502. Doi: https://doi.org/10.1111/j.1745-4549.2007.00165.x DOI: https://doi.org/10.1111/j.1745-4549.2007.00165.x
Aguilera M. La yuca en el Caribe colombiano: de cultivo ancestral a agroindustrial. Cartagena; 2012. Report No.: 158 de 2012. Disponible en: http://www.banrep.gov.co/docum/Lecturafinanzas/pdf/dtser158.pdf. Citado: 14 Ene 2020
Allem AC. The origin of Manihot esculenta Crantz (Euphorbiaceae). Genet Resour Crop Evol. 1994;41:133–150. Doi: https://doi.org/10.1007/BF00051630 DOI: https://doi.org/10.1007/BF00051630
Allem AC. The closest wild relatives of cassava (Manihot esculenta Crantz). Euphytica. 1999;107:123–33. Doi: https://doi.org/10.1023/A:1026422229054 DOI: https://doi.org/10.1023/A:1026422229054
Amoroso L. The Second International Conference on Nutrition: Implications for Hidden Hunger. World Rev Nutr Diet. 2016;115:142-152.Doi: https://doi.org/10.1159/000442100 DOI: https://doi.org/10.1159/000442100
Balarajan Y, Ramakrishnan U, Özaltin E, Shankar AH, Subramanian SV. Anemia in low-income and middle-income countries. Lancet. 2011;378(9809):2123–35. Doi: https://doi.org/10.1016/S0140-6736(10)62304-5 DOI: https://doi.org/10.1016/S0140-6736(10)62304-5
Bechoff A, Chijioke U, Westby A, Tomlins KI. “ Yellow is good for you”: consumer perception and acceptability of fortified and biofortified cassava products. 2018;8259:1–22. Doi: https://doi.org/10.1371/journal.pone.0203421 DOI: https://doi.org/10.1371/journal.pone.0203421
Bechoff A, Tomlins K, Fliedel G, Lopez-lavalle LAB, Westby A, Hershey C, et al. Cassava traits and end-user preference: relating traits to consumer liking, sensory perception, and genetics. Crit Rev Food Sci Nutr. 2018;58(4):547-567. Doi: https://doi.org/10.1080/10408398.2016.1202888 DOI: https://doi.org/10.1080/10408398.2016.1202888
Bezanson K, Isenman P. Scaling up nutrition: a framework for action. Food Nutr Bull; 2010;31(1):178–186. Doi: https://doi.org/10.1177/156482651003100118 DOI: https://doi.org/10.1177/156482651003100118
Blair MW, Astudillo C, Grusak MA, Graham R, Beebe SE. Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.). Mol. Breed. 2009;23:197–207. Doi: https://doi.org/10.1007/s11032-008-9225-z DOI: https://doi.org/10.1007/s11032-008-9225-z
Bredeson JV, Lyons JB, Prochnik SE, Wu GA, Ha CM, Edsinger-Gonzales E, et al. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat. Biotechnol. 2016;34:562–570. Doi: http://doi.org/10.1038/nbt.3535 DOI: https://doi.org/10.1038/nbt.3535
Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet. 2013;382(9890):427–51. Doi: https://doi.org/10.1016/S0140-6736(13)60937-X DOI: https://doi.org/10.1016/S0140-6736(13)60937-X
Bradbury EJ, Duputié A, Delêtre M, Roullier C, Narváez-Trujillo A, Manu-Aduening JA, et al. Geographic differences in patterns of genetic differentiation among bitter and sweet manioc (Manihot esculenta subsp. esculenta; Euphorbiaceae). Am J Bot. 2013;100(5):857–66. Doi: https://doi.org/10.3732/ajb.1200482 DOI: https://doi.org/10.3732/ajb.1200482
Chavarriaga-Aguirre PP, Maya MM, Bonierbale MW, Kresovich S, Fregene MA, Tohme J, et al. Microsatellites in cassava (Manihot esculenta Crantz): discovery, inheritance and variability. Theor Appl Genet. 1998;97:493–501. Doi: https://doi.org/10.1007/s001220050 DOI: https://doi.org/10.1007/s001220050922
Chávez AL, Sánchez T, Jaramillo G, Bedoya JM, Echeverry J, Bolaños EA, et al. Variation of quality traits in cassava roots evaluated in landraces and improved clones. Euphytica. 2005;143(1-2):125–33. Doi: https://doi.org/10.1007/s10681-005-3057-2 DOI: https://doi.org/10.1007/s10681-005-3057-2
de Onis M, Branca F. Childhood stunting: a global perspective. Matern Child Nutr. . 2016;12(S1):12–26. Doi: https://doi.org/10.1111/mcn.12231 DOI: https://doi.org/10.1111/mcn.12231
Drapal M, Barros de Carvalho E, Ovalle Rivera TM, Lopez-Lavalle LAB, Fraser PD. Capturing biochemical diversity in Cassava (Manihot esculenta Crantz) through the application of metabolite profiling. J Agric Food Chem. 2019;67(3):986-993. Doi: https://doi.org/10.1021/acs.jafc.8b04769 DOI: https://doi.org/10.1021/acs.jafc.8b04769
Eggum BO. The protein quality of cassava leaves. Br J Nutr. 1970;24(3):761–8. Doi: https://doi.org/10.1079/BJN19700078 DOI: https://doi.org/10.1079/BJN19700078
Elias M, Panaud O, Robert T. Assessment of genetic variability in a traditional cassava (Manihot esculenta Crantz ) farming system, using AFLP markers. Heredity 2000;85:219–30. Doi: https://doi.org/10.1046/j.1365-2540.2000.00749.x DOI: https://doi.org/10.1046/j.1365-2540.2000.00749.x
Elias M, Mckey D, Panaud O, Anstett MC, Robert T. Traditional management of cassava morphological and genetic diversity by the Makushi Amerindians (Guyana, South America): perspectives for on-farm conservation of crop genetic resources. Euphytica. 2001a;120:143–57. Doi: https://doi.org/10.1023/A:1017501017031 DOI: https://doi.org/10.1023/A:1017501017031
Elias M, Penet L, Vindry P, McKey D, Panaud O, Robert T. Unmanaged sexual reproduction and the dynamics of genetic diversity of a vegetatively propagated crop plant, cassava (Manihot esculenta Crantz) in a traditional farming system. Mol Ecol. 2001b;10(8):1895–907. Doi: https://doi.org/10.1046/j.0962-1083.2001.01331.x DOI: https://doi.org/10.1046/j.0962-1083.2001.01331.x
Elias M, Muhlen GS, Mckey D, Roa AC, Tohme J. Genetic diversity of traditional South American landraces of Cassava (Manihot esculenta Crantz): an analysis using microsatellites. Econ Bot. 2004;58:242–56. Doi: https://doi.org/10.1663/0013-0001(2004)058[0242:GDOTSA]2.0.CO;2 DOI: https://doi.org/10.1663/0013-0001(2004)058[0242:GDOTSA]2.0.CO;2
Emperaire L, Peroni N. Traditional management of agrobiodiversity in Brazil : a case study of Manioc. Hum Ecol. 2007;35(6):761–8. Doi: https://doi.org/10.1007/s10745-007-9121-x DOI: https://doi.org/10.1007/s10745-007-9121-x
FAO. (2018). Food Outlook, Biannual Report on Global Food Markets. Trade and Markets Division of FAO. http://www.fao.org/3/CA2320EN/ca2320en.pdf
Fischer T, Byerlee D, Edmeades G. Crop yields and global food security: will yield increase continue to feed the world?. Canberra: ACIAR; 2014. p. 634.
Fregene MA, Suarez M, Mkumbira J, Kulembeka H, Ndedya E, Kulaya A, et al. Simple sequence repeat (SSR) diversity of cassava (Manihot esculenta Crantz) landraces: genetic diversity and differentiation in a predominantly asexually propagated crop. Theor Appl Genet. 2003;107:1083–93. Doi: https://doi.org/10.1007/s00122-003-1348-3 DOI: https://doi.org/10.1007/s00122-003-1348-3
Gaitán-Solís E, Taylor NJ, Siritunga D, Stevens W, Schachtman DP. Overexpression of the transporters AtZIP1 and AtMTP1 in cassava changes zinc accumulation and partitioning. Front Plant Sci. 2015;6:492. Doi: https://doi.org/10.3389/fpls.2015.00492 DOI: https://doi.org/10.3389/fpls.2015.00492
Genc Y, Verbyla AP, Torun AA, Cakmak I, Willsmore K, Wallwork H, McDonald GK. Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping. Plant Soil. 2008;314: 49–66. Doi: https://doi.org/10.1007/s11104-008-9704-3 DOI: https://doi.org/10.1007/s11104-008-9704-3
Gómez W, Cardona Ayala C, Rivero S. Producción y calidad del forraje de tres variedades de yuca bajo tres densidades de siembra. Temas Agrarios. 2016;21(2): 9-20. Doi: https://doi.org/10.21897/rta.v21i2.897 DOI: https://doi.org/10.21897/rta.v21i2.897
González C, Johnson N, Qaim M. Consumer acceptance of second‐generation GM foods: the case of biofortified Cassava in the North‐east of Brazil. J Agric Econ. 2009;60(3):604–24. Doi: https://doi.org/10.1111/j.1477-9552.2009.00219.x DOI: https://doi.org/10.1111/j.1477-9552.2009.00219.x
Govender L, Pillay K, Siwela M, Modi AT, Mabhaudhi T. Consumer perceptions and acceptability of traditional dishes prepared with provitamin A-biofortified maize and sweet potato. Nutrients. 2019;11(7):1577. Doi: https://doi.org/10.3390/nu11071577 DOI: https://doi.org/10.3390/nu11071577
Gu R, Chen F, Liu B, Wang X, Liu J, Li P, Pan Q, et al. Comprehensive phenotypic analysis and quantitative trait locus identification for grain mineral concentration, content, and yield in maize (Zea mays L.). Theor Appl Genet. 2015;128(9):1777-1789. Doi: https://doi.org/10.1007/s00122-015-2546-5 DOI: https://doi.org/10.1007/s00122-015-2546-5
Heckler S, Zent S. Piaroa Manioc Varietals : Hyperdiversity or social currency? Hum Ecol. 2008;36(5):679–97. Doi: https://doi.org/10.1007/s10745-008-9193-2 DOI: https://doi.org/10.1007/s10745-008-9193-2
Henry RJ. Innovations in plant genetics adapting agriculture to climate change. Curr Opin Plant Biol. 2019;S1369-5266(19)30112-8. Doi: https://doi.org/10.1016/j.pbi.2019.11.004 DOI: https://doi.org/10.1016/j.pbi.2019.11.004
Howeler RH. The cassava handbook : a reference manual based on the Asian Regional Cassava Training Course, held in Thailand. Bangkok: Centro Internacional de Agricultura Tropical (CIAT); 2012. 801 p.
Huang X, Han B. Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol. 2014;65:531-551. Doi: https://doi.org/10.1146/annurev-arplant-050213-035715 DOI: https://doi.org/10.1146/annurev-arplant-050213-035715
Ihemere UE, Narayanan NN, Sayre RT. Iron biofortification and homeostasis in transgenic Cassava roots expressing the algal iron assimilatory gene, FEA1. Front Plant Sci. 2012;3:171. Doi: https://doi.org/10.3389/fpls.2012.00171 DOI: https://doi.org/10.3389/fpls.2012.00171
Ilona P, Bouis HE, Palenberg M, Moursi M, Oparinde A. Vitamin A cassava in Nigeria: crop development and delivery. African J Food Agric Nutr Dev. 2017;17(2): 12000-12025. doi: https://doi.org/10.18697/ajfand.78.HarvestPlus09 DOI: https://doi.org/10.18697/ajfand.78.HarvestPlus09
Kawuki RS, Ferguson M, Labuschagne M, Herselman L, Kim D-J. Identification, characterisation and application of single nucleotide polymorphisms for diversity assessment in cassava (Manihot esculenta Crantz). Mol Breed. 2009;23(4):669–84. Doi: https://doi.org/10.1007/s11032-009-9264-0 DOI: https://doi.org/10.1007/s11032-009-9264-0
Kobayashi T, Nishizawa NK. Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol. 2012;63:131–152. Doi: https://doi.org/10.1146/annurev-arplant-042811-105522 DOI: https://doi.org/10.1146/annurev-arplant-042811-105522
Kumar S, Hash CT, Thirunavukkarasu N, Singh G, Rajaram V, Rathore A, et al. Mapping quantitative trait loci controlling high iron and zinc content in self and Open pollinated grains of pearl millet [Pennisetum glaucum (L.) R. Br.]. Front Plant Sci. 2016;7:1636. Doi: https://doi.org/10.3389/fpls.2016.01636 DOI: https://doi.org/10.3389/fpls.2016.01636
Latif S, Müller J. Potential of cassava leaves in human nutrition: a review. Trends Food Sci Technol. 2015;44(2):147–58. Doi: https://doi.org/10.1016/j.tifs.2015.04.006 DOI: https://doi.org/10.1016/j.tifs.2015.04.006
Latif S, Zimmermann S, Barati Z, Müller J. Detoxification of Cassava leaves by thermal, sodium bicarbonate, enzymatic, and ultrasonic treatments. J Food Sci. 2019;84(7):1986–91. Doi: https://doi.org/10.1111/1750-3841.14658 DOI: https://doi.org/10.1111/1750-3841.14658
Lau WCP, Rafii MY, Ismail MR, Puteh A, Latif MA, Ramli A. Review of functional markers for improving cooking, eating, and the nutritional qualities of rice. Front Plant Sci. 2015;6:832. doi: https://doi.org/10.3389/fpls.2015.00832 DOI: https://doi.org/10.3389/fpls.2015.00832
Manjeru P, Van Biljon A, Labuschagne M. The development and release of maize fortified with provitamin A carotenoids in developing countries. Crit Rev Food Sci Nutr. 2019;59(8):1284-1293. Doi: https://doi.org/10.1080/10408398.2017.1402751 DOI: https://doi.org/10.1080/10408398.2017.1402751
Maziya-Dixon B, Kling JG, Dixon AM. Genetic Variation in total carotene, iron, and zinc contents of Maize and Cassava genotypes. Food Nutr Bull. 2000;21(4):419–22. Doi: https://doi.org/10.1177%2F156482650002100415 DOI: https://doi.org/10.1177/156482650002100415
Montagnac JA, Davis CR, Tanumihardjo SA. Nutritional value of Cassava for use as a staple food and recent advances for improvement. Compr Rev Food Sci Food Saf. 2009a;8(3):181–94. Doi: https://doi.org/10.1111/j.1541-4337.2009.00077.x DOI: https://doi.org/10.1111/j.1541-4337.2009.00077.x
Montagnac JA, Davis CR, Tanumihardjo SA. Processing techniques to reduce toxicity and antinutrients of Cassava for use as a staple food. Compr Rev Food Sci Food Saf. 2009b;8(1):17–27. Doi: https://doi.org/10.1111/j.1541-4337.2008.00064.x DOI: https://doi.org/10.1111/j.1541-4337.2008.00064.x
Muthayya S, Rah JH, Sugimoto JD, Roos FF, Kraemer K, Black RE. The global hidden hunger indices and maps: an advocacy tool for action. PLoS One. 2013;8(6). doi: https://doi.org/10.1371/journal.pone.0067860 DOI: https://doi.org/10.1371/journal.pone.0067860
Narayanan N, Beyene G, Chauhan RD, Gaitán-solís E, Gehan J, Butts P, et al. Biofortification of field-grown cassava by engineering expression of an iron transporter and ferritin. Nat Biotechnol. 2019;37:144-151. Doi: https://doi.org/10.1038/s41587-018-0002-1 DOI: https://doi.org/10.1038/s41587-018-0002-1
Ngiki YU, Igwebuiki JU, Moruppa S. Utilization of cassava products for poultry feeding: A review. Int J Sci Technol. 2014;2:48–59.
Olsen KM, Schaal BA. Evidence on the origin of cassava : Phylogeography of Manihot esculenta. Proc Natl Acad Sci USA. 1999;96:5586–91. Doi: https://doi.org/10.1073/pnas.96.10.5586 DOI: https://doi.org/10.1073/pnas.96.10.5586
OMS. (10 de Enero de 2020). Organización Mudial de la Salud. ¿Qué es la malnutrición? https://www.who.int/features/qa/malnutrition/es/
Ospina B, Ceballos H. La yuca en el Tercer Milenio: sistemas modernos de producción, procesamiento, utilización y comercialización. Bogotá: CIAT, CLAYUCA; 2002. 586 p.
Palmgren MG, Clemens S, Williams LE, Krämer U, Borg S, Schjørring JK, Sanders D. Zinc biofortification of cereals: problems and solutions. Trends Plant Sci. 2008;13: 464–473. Doi: https://doi.org/10.1016/j.tplants.2008.06.005 DOI: https://doi.org/10.1016/j.tplants.2008.06.005
Peña-Venegas CP, Stomph TJ, Vershoor G, Becerra Lopez-Lavalle LA, Struik PC. Differences in manioc diversity among five ethnic groups of the Colombian Amazon. Diversity. 2014;6(4):792–826. Doi: https://doi.org/10.3390/d6040792 DOI: https://doi.org/10.3390/d6040792
Pérez D, Mora R, López-Carrascal C. Conservación de la diversidad de yuca en los sistemas tradicionales de cultivo de la Amazonía. Acta Biol Colomb. 2019;24(2):202-212. Doi: http://dx.doi.org/10.15446/abc.v24n2.75428 DOI: https://doi.org/10.15446/abc.v24n2.75428
Ravindran G, Ravindran V. Changes in the nutritional composition of Cassava (Manihot esculenta Crantz) leaves during maturity. Food Chem. 1988;27(4):299-309. Doi: https://doi.org/10.1016/0308-8146(88)90014-3 DOI: https://doi.org/10.1016/0308-8146(88)90014-3
Rogers DJ. Cassava leaf protein. Econ Bot. 1959;13(3). Doi: https://doi.org/10.1007/BF02860586 DOI: https://doi.org/10.1007/BF02860586
Rogers DJ, Milner M. Amino acid profile of manioc leaf protein in relation to nutritive value. Econ Bot. 1963;17(3):211–6. Doi: https://doi.org/10.1007/BF02859438 DOI: https://doi.org/10.1007/BF02859438
Montero-Rojas MM, Correa AM, Siritunga D. Molecular differentiation and diversity of cassava (Manihot esculenta) taken from 162 locations across Puerto Rico and assessed with microsatellite markers. AoB Plants. 2017;1–13. Doi: https://doi.org/10.1093/aobpla/plr010 DOI: https://doi.org/10.1093/aobpla/plr010
Ruel-Bergeron JC, Stevens GA, Sugimoto JD, Roos FF, Ezzati M, Black RE, et al. Global update and trends of hidden hunger, 1995-2011: The Hidden Hunger Index. PLoS One. 2015;10(12):e0143497. Doi: https://doi.org/10.1371/journal.pone.0143497 DOI: https://doi.org/10.1371/journal.pone.0143497
Smith P, Gregory PJ. Climate change and sustainable food production. Proc Nutr Soc. 2013;72(1):21-28. Doi: https://doi.org/10.1017/S0029665112002832 DOI: https://doi.org/10.1017/S0029665112002832
Sompong U, Somta P, Raboy V, Srinives P. Mapping of quantitative trait loci for phytic acid and phosphorus contents in seed and seedling of mungbean (Vigna radiata (L.) Wilczek). Breed Sci. 2012;62(1):87-92. Doi: https://doi.org/10.1270/jsbbs.62.87 DOI: https://doi.org/10.1270/jsbbs.62.87
Suarez L, Mederos V. Apuntes sobre el cultivo de yuca (Manihot esculenta Crantz) tendencias actuales. Cultiv Trop. 2011;32(3):27–35.
Talsma EF, Borgonjen-van den Berg KJ, Melse-Boonstra A, Mayer EV, Verhoef H, Demir AY, et al. The potential contribution of yellow cassava to dietary nutrient adequacy of primary-school children in Eastern Kenya; the use of linear programming. Public Health Nutr. 2017;21(2):365–76. Doi: https://doi.org/10.1017/S1368980017002506 DOI: https://doi.org/10.1017/S1368980017002506
Teles FF. Chronic poisoning by hydrogen cyanide in cassava and its prevention in Africa and Latin America. Food Nutr Bull. 2002;23(4):407-412. Doi: https://doi.org/10.1177/156482650202300418 DOI: https://doi.org/10.1177/156482650202300418
Tiago AV, Rossi AAB, Tiago PV, Carpejani AA, Silva BM, Hoogerheide ESS, et al. Genetic diversity in cassava landraces grown on farms in Alta Floresta-MT, Brazil. Genet Mol Res. 2016;15(3). Doi: https://doi.org/10.4238/gmr.15038615 DOI: https://doi.org/10.4238/gmr.15038615
Tovar E, Bocanegra JL, Villafañe C, Fory L, Velasquez A, Gallego G, et al. Diversity and genetic structure of cassava landraces and their wild relatives (Manihot spp.) in Colombia revealed by simple sequence repeats. Plant Genet Resour. 2015;14(3):200–210. Doi: https://doi.org/10.1017/S1479262115000246 DOI: https://doi.org/10.1017/S1479262115000246
UN. United Nations. Sustainable Development Goal 2: end hunger, achieve food security and improved nutrition and promote sustainable agriculture. United Nations Sustainable Development Knowledge Platform. 2017. Disponible en: https://sustainabledevelopment.un.org/sdg2¬¬. Citado: 14 Ene 2020.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Noel Antonio González-Valdivia, Gilberto Matos-Pech, Carlos García-Acedo, Enrique Arcocha-Gómez, Mónica López-Hernández, Alicia Puertovannetti-Arroyo. (2023). Estimación del rendimiento de harina seca de yuca (Manihot esculenta Crantz) en un luvisol férrico de Campeche, México. Journal of the Selva Andina Biosphere, 11(1), p.76. https://doi.org/10.36610/j.jsab.2023.110100073.
2. Jennifer Lorena Avendaño Zambrano, Flavia de Oliveira Paulino, Denise Dias da Cruz. (2025). Traditional Products and Their Processes. , p.113. https://doi.org/10.1016/B978-0-323-90844-3.00012-3.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2021 Acta Biológica Colombiana
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. La aceptación de manuscritos por parte de la revista implicará, además de su edición electrónica de acceso abierto bajo licencia Attribution-NonCommercial-ShareAlike 4.0 (CC BY NC SA), la inclusión y difusión del texto completo a través del repositorio institucional de la Universidad Nacional de Colombia y en todas aquellas bases de datos especializadas que el editor considere adecuadas para su indización con miras a incrementar la visibilidad de la revista.
2. Acta Biológica Colombiana permite a los autores archivar, descargar y compartir, la versión final publicada, así como las versiones pre-print y post-print incluyendo un encabezado con la referencia bibliográfica del articulo publicado.
3. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
4. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos institucionales, en su página web o en redes sociales cientificas como Academia, Researchgate; Mendelay) lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).