Publicado
GENETIC VARIABILITY AND REPRODUCTIVE CHARACTERISTICS OF ZEBRAFISH (Cyprinidae Danio rerio) STOCKS
Variabilidad genética y características reproductivas de poblaciones de pez cebra (Cyprinidae Danio rerio)
DOI:
https://doi.org/10.15446/abc.v27n2.87739Palabras clave:
Animal model, consanguinity, DNA, female, fish larvae (en)Modelo animal, consanguinidad, ADN, hembra, larvas de peces (es)
Descargas
Specimens of cultured zebrafish acquired from different fish farms in Brazil may show genetic variability and alteration in allele frequency due to genetic drift and selective pressure in a captive environment, resulting in the differentiation of productive and reproductive characteristics. The aim of this study was to evaluate the genetic variability and reproductive characteristics of 180 zebrafish specimens from six Brazilian fish farms. A deviation from the Hardy-Weinberg equilibrium was observed in all evaluated stocks. Differentiation among stocks was observed in the amount of genetic variability with respect to observed heterozygosity and the inbreeding coefficient (FIS). Genetic distance between stocks was determined through the Fst index, and the formation of four distinct groups was observed by plotting the dendrogram based on Nei’s genetic distance. Differences were observed among reproductive parameters, such as the average number of eggs per female and hatchability. This second parameter proved to be related to the level of inbreeding of the population, whereas this effect was not observed for spawning frequency. We conclude that zebrafish stocks from the 6 different Brazilian fish farms present significant genetic and phenotypic variability. The genetic structure affects fecundity and should be considered when carrying out work where reproductive rates are evaluated.
Especímenes de pez cebra adquiridos en diferentes piscifactorías pueden mostrar variabilidad genética y alteración en la frecuencia de los alelos debido a la deriva genética y presión selectiva llevada a cabo en un ambiente cautivo, lo que resulta en la diferenciación de las características productivas y reproductivas. Este estudio busco evaluar la variabilidad genética y las características reproductivas de 180 especímenes de pez cebra adquiridos de seis piscifactorías brasileras. Hubo una desviación en el equilibrio de Hardy-Weinberg en todas las poblaciones evaluadas. Se encontró diferenciación en términos del grado de variabilidad dentro de las poblaciones, en vista de los resultados de la heterocigosidad observada y el coeficiente de endogamia (Fis). La distancia genética entre ellos se verificó usando el índice Fst, y se observó la formación de cuatro grupos distintos al trazar el dendrograma basado en la distancia genética de Nei. Se observó una diferencia en relación con los parámetros reproductivos, como el número promedio de huevos por hembra y la incubabilidad. Este segundo parámetro demostró estar relacionado con el nivel de consanguinidad de la población, y este efecto no se verificó para la frecuencia de desove. Se puede considerar que las existencias de pez cebras de diferentes lugares tienen variabilidad genética y fenotípica. La estructura genética influye principalmente en la fertilización y debe tenerse en cuenta al realizar trabajos donde se evalúan los índices reproductivos.
Referencias
Bai, W., Zhang, Z., Tian, W., He, X., Ma, Y., Zhao, Y., and Chai, Z. (2010). Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. Journal of Nanoparticle Research, 12(5):1645–54. https://doi.org/10.1007/s11051-009-9740-9 DOI: https://doi.org/10.1007/s11051-009-9740-9
Best, J., Adatto, I., Cockington, J., James, A., and Lawrence, C. (2010). A Novel Method for Rearing First-Feeding Larval Zebrafish: Polyculture with Type L Saltwater Rotifers (Brachionus plicatilis). Zebrafish, 7(3), 289–95. https://doi.org/10.1089/zeb.2010.0667 DOI: https://doi.org/10.1089/zeb.2010.0667
Brown-Peterson, N. J., Wyanski, D. M., Saborido-Rey, F., Macewicz, B. J., and Lowerre-Barbieri, S. K. (2011). A standardized terminology for describing reproductive development in fishes. Marine and Coastal Fisheries, 3(1), 52–70. https://doi.org/10.1080/19425120.2011.555724 DOI: https://doi.org/10.1080/19425120.2011.555724
Brown, A. R., Bickley, L. K., Ryan, T. A., Paull, G. C., Hamilton, P. B., Owen, S. F., Sharpe, A. D., and Tyler, C. R. (2012). Differences in sexual development in inbred and outbred zebrafish (Danio rerio) and implications for chemical testing. Aquatic Toxicology, 112–113, 27-38. https://doi.org/10.1016/j.aquatox.2012.01.017 DOI: https://doi.org/10.1016/j.aquatox.2012.01.017
Coe, T. S., Hamilton, P. B., Griffiths, A. M., Hodgson, D. J., Wahab, M. A., and Tyler, C. R. (2009). Genetic variation in strains of zebrafish (Danio rerio) and the implications for ecotoxicology studies. Ecotoxicology, 18(1), 144–50. https://doi.org/10.1007/s10646-008-0267-0 DOI: https://doi.org/10.1007/s10646-008-0267-0
Fessehaye, Y., Bovenhuis, H., Rezk, M. A., Crooijmans, R., van Arendonk, J. A. M., and Komen, H. (2009). Effects of relatedness and inbreeding on reproductive success of Nile tilapia (Oreochromis niloticus). Aquaculture, 294(3–4), 180–186. https://doi.org/S0044848609005195 DOI: https://doi.org/10.1016/j.aquaculture.2009.06.001
Frankham, R., Ballou, J., and Briscoe, D. (2008). Fundamentos de Genética da Conservação. Sociedade Brasileira de Genética.
Gallardo, J. A., García, X., Lhorente, J. P., and Neira, R. (2004). Inbreeding and inbreeding depression of female reproductive traits in two populations of Coho salmon selected using BLUP predictors of breeding values. Aquaculture, 234(1–4), 111–22. https://doi.org/10.1016/j.aquaculture.2004.01.009 DOI: https://doi.org/10.1016/j.aquaculture.2004.01.009
Goessling, W., and Sadler, K. C. (2015). Zebrafish: An Important Tool for Liver Disease Research. Gastroenterology, 149(6), 1361–77. Doi: https://doir.org/10.1053/j.gastro.2015.08.034 DOI: https://doi.org/10.1053/j.gastro.2015.08.034
Gratton, P., Allegrucci, G., Gallozzi, M., Fortunato, C., Ferreri, F., and Sbordoni, V. (2004). Allozyme and microsatellite genetic variation in natural samples of zebrafish, Danio rerio. Journal of Zoological Systematics and Evolutionary Research, 42(1), 54–62. https://doi.org/10.1046/j.0947-5745.2003.00240.x DOI: https://doi.org/10.1046/j.0947-5745.2003.00240.x
Howe, K., Clark, M. D., Torroja, C. F., Torrance, J., Berthelot, C., Muffato, M., Collins, J. E., Humphray, S., McLaren, K., Matthews, L., McLaren, S., Sealy, I., Caccamo, M., Churcher, C., Scott, C., Barrett, J. C., Koch, R., Rauch, G.-J., White, S…Stemple, D. L. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446), 498–503. https://doi.org/10.1038/nature12111 DOI: https://doi.org/10.1038/nature12111
Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11):1403–5. https://doi.org/10.1093/bioinformatics/btn129 DOI: https://doi.org/10.1093/bioinformatics/btn129
Kamvar, Z. N., Brooks, J. C., and Grünwald, N. J. (2015). Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Frontiers in Genetics Plant genetics and Genomics, 6(JUN), 1–10. http://dx.doi.org/10.3389/fgene.2015.00208 DOI: https://doi.org/10.3389/fgene.2015.00208
Kause, A., Ritola, O., Paananen, T., Wahlroos, H., Mäntysaari, E. A., and Mäntysaaria E. A. Genetic trends in growth, sexual maturity and skeletal deformations, and rate of inbreeding in a breeding programme for rainbow trout (Oncorhynchus mykiss). Aquaculture, 247(1–4):177–87. https://doi.org/10.1016/j.aquaculture.2005.02.023 DOI: https://doi.org/10.1016/j.aquaculture.2005.02.023
Kinth, P., Mahesh, G., and Panwar, Y. (2013). Mapping of zebrafish research: A global outlook. Zebrafish, 10(4), 510–507. https://doi.org/10.1089/zeb.2012.0854 DOI: https://doi.org/10.1089/zeb.2012.0854
Langen, K., Bakker, T. C. M., Baldauf, S. A., Shrestha, J., and Thünken, T. (2017a). Effects of ageing and inbreeding on the reproductive traits in a cichlid fish I: the male perspective. Biological Journal of the Linnean Society, 120(4):752–61. https://doi.org/10.1093/biolinnean/blw002 DOI: https://doi.org/10.1093/biolinnean/blw002
Langen, K., Bakker, T. C. M., Baldauf, S. A., Shrestha, J., and Thünken, T. (2017b). Effects of ageing and inbreeding on the reproductive traits in a cichlid fish II: the female perspective. Biological Journal of the Linnean Society, 120(4), 762–70. https://doi.org/10.1093/biolinnean/blw002 DOI: https://doi.org/10.1093/biolinnean/blw003
Liang, X., Souders, C. L., Zhang, J., and Martyniuk, C. J. (2017). Tributyltin induces premature hatching and reduces locomotor activity in zebrafish (Danio rerio) embryos/larvae at environmentally relevant levels. Chemosphere, 189, 498–506. https://doi.org/S0045653517315072 DOI: https://doi.org/10.1016/j.chemosphere.2017.09.093
Lopera-Barrero, N. M., Povh, J. A., Ribeiro, R. P., Gomes, P. C., Jacometo, C. B., and da Silva, T. L. (2008). Comparison of DNA extraction protocols of fish fin and larvae samples: Modified salt (NaCl) extraction. Ciencia e investigación agraria, 35(1), 65–74. https://doi.org/10.4067/rcia.v35i1.374 DOI: https://doi.org/10.4067/S0718-16202008000100008
Lopera-Barrero, N. M., Rodriguez-Rodriguez, M. D. P., Fornari, D. C., Kawakami de Resende, E., Poveda-Parra, A. R., Braccini, A. R. G, Souza, P., Furlan, F., Aparecido Povh, P. J., Pereira Ribeiro, J., andRicardo, R. (2015). Genetic variability of broodstocks of Tambaqui (Teleostei – Characidae) from the northeast region of Brazil. Semin Ciências Agrárias, 36(6), 4013. https://doi.org/10.5433/1679-0359.2015v36n6p4013 DOI: https://doi.org/10.5433/1679-0359.2015v36n6p4013
Mehlis, M., Frommen, J. G., Rahn, A. K., and Bakker, T. C. M. (2012). Inbreeding in three-spined sticklebacks (Gasterosteus aculeatus L.): effects on testis and sperm traits. Biological Journal of the Linnean Society, 107(3), 510–520. https://doi.org/10.1111/j.1095-8312.2012.01950.x DOI: https://doi.org/10.1111/j.1095-8312.2012.01950.x
Menon, A. (1999). Check list – fresh water fishes of India. NHBS 175. (366), 234–259.
Meyer, B. M., Froehlich, J. M., Galt, N. J., and Biga, P. R. (2013). Comparative Biochemistry and Physiology , Part A Inbred strains of zebra fi sh exhibit variation in growth performance and myostatin expression following fasting. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 164(1), 1–9. https://doi.org/10.1016/j.cbpa.2012.10.004 DOI: https://doi.org/10.1016/j.cbpa.2012.10.004
Mizgirev, I., and Revskoy, S. (2010). Generation of clonal zebrafish lines and transplantable hepatic tumors. Nature Protocols, 5(3), 383–94. https://doi.org/10.1038/nprot.2010.8 DOI: https://doi.org/10.1038/nprot.2010.8
Monroe, J. D., Manning, D. P., Uribe, P. M., Bhandiwad, A., Sisneros, J. A., Smith, M. E., Coffin, A. B. (2016). Hearing sensitivity differs between zebrafish lines used in auditory research. Hearing Research, 341, 220–231. https://doi.org/10.1016/j.heares.2016.09.004 DOI: https://doi.org/10.1016/j.heares.2016.09.004
Monson, C. A., and Sadler, K. C. (2010). Inbreeding Depression and Outbreeding Depression Are Evident in Wild-Type Zebrafish Lines. Zebrafish, 7(2), 189–197. https://doi.org/10.1089/zeb.2009.0648 DOI: https://doi.org/10.1089/zeb.2009.0648
Moreira, A. A., Hilsdorf, A. W. S., Silva, J. V da, Souza VR de. (2007). Variabilidade genética de duas variedades de tilápia nilótica por meio de marcadores microssatélites. Pesqui Agropecuária Brasil, 42(4), 521–526. http://dx.doi.org/10.1590/S0100-204X2007000400010 DOI: https://doi.org/10.1590/S0100-204X2007000400010
Mrakovcic M, Haley LE. (2004). Inbreeding depression in the Zebrafish Brachydanio rerio (Hamilton Buchanan). Aquaculture, 234(1–4), 111–22. https://doi.org/S0044848604000328
Nakadate, M., Shikano, T., and Taniguchi, N. (2003). Inbreeding depression and heterosis in various quantitative traits of the guppy, Poecilia reticulata. Aquaculture 220(1–4), 219–226. https://doi.org/10.1016/S0044-8486(02)00432-5 DOI: https://doi.org/10.1016/S0044-8486(02)00432-5
Nasiadka, A., and Clark, M. D. (2012). Zebrafi Breeding in the Laboratory Environment. ILAR J. 53(2), 161–168. DOI: https://doi.org/10.1093/ilar.53.2.161
Pamanji, R., and Yashwanth, B. Venkateswara Rao, J. (2016). Profenofos induced biochemical alterations and in silico modelling of hatching enzyme, ZHE1 in zebrafish (Danio rerio) embryos. Environmental Toxicology and Pharmacology, 45, 123–31. https://doi.org/10.1016/j.etap.2016.05.027 DOI: https://doi.org/10.1016/j.etap.2016.05.027
Peakall, R., and Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics, 28(19), 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 DOI: https://doi.org/10.1093/bioinformatics/bts460
Rodriguez-Rodriguez, M., Lopera-Barrero, N. M., Ribeiro, R. P., Povh, J. A., Vargas, L., Sirol, R. N., and Jacometoet, C. B. (2010). Diversidad genética de piracanjuba usada en programas de repoblación con marcadores microsatélites. Pesquisa Agropecuária Brasileira, 45(1), 56–63. https://doi.org/10.1590/S0100-204X2010000100008 DOI: https://doi.org/10.1590/S0100-204X2010000100008
Santoriello, C., and Zon, L. I. (2012). Science in medicine Hooked ! Modeling human disease in zebrafish. The Journal of Clinical Investigation, 122(7), 2337–2343. https://doi.org/10.1172/JCI60434 DOI: https://doi.org/10.1172/JCI60434
Santos, C. H. A., Santana, G. X., Sá Leitão, C. S., Paula-Silva, M. N., and Almeida-Val, V. M. F. (2016). Loss of genetic diversity in farmed populations of Colossoma macropomum estimated by microsatellites. Animal Genetics, 47(3), 373–376. https://doi.org/10.1111/age.12422 DOI: https://doi.org/10.1111/age.12422
Shimoda, N., Knapik, E. W., Ziniti, J., Sim, C., Yamada, E., Kaplan, S., Frederic de Sauvage, D. J., Jacob, H., and Fishmana, M. C. (1999). Zebrafish genetic map with 2000 microsatellite markers. Genomics 58(3), 219–32. https://doi.org/10.1006/geno.1999.5824 DOI: https://doi.org/10.1006/geno.1999.5824
Silva, D., Cortinhas, M. C., Kersanach., R., Proietti., M., Cestari Dumonta, L. F., D’Incao, F., Lacerda, A. L. F., Sanmartin Prata, P., Matoso, D. A., Bueno Noleto, R., Ramsdorf, W., Aiex Boni, T., Prioli, A. J., and Cestari, M. M. (2016). Genetic structuring among silverside fish (Atherinella brasiliensis) populations from different Brazilian regions. Estuarine, Coastal and Shelf Science, 178, 148–157. https://doi.org/10.1016/j.ecss.2016.06.007 DOI: https://doi.org/10.1016/j.ecss.2016.06.007
Su, G. -S., Liljedahl, L. -E., and Gall, G. A. E. (1995). Effects of inbreeding on growth and reproductive traits in rainbow trout (Oncorhynchus mykiss). Aquaculture, 142(3-4), 139–48. https://doi.org/10.1016/0044-8486(96)01255-0 DOI: https://doi.org/10.1016/0044-8486(96)01255-0
Vignet, C., Bégout, M. -L., Péan, S., Lyphout, L., Leguay, D., and Cousin, X. (2013). Systematic Screening of Behavioral Responses in Two Zebrafish Strains. Zebrafish, 10(3), 365–75. https://doi.org/10.1089/zeb.2013.0871 DOI: https://doi.org/10.1089/zeb.2013.0871
Vilella, A. J., Severin, J., Ureta-Vidal, A., Heng, L., Durbin, R., and Birney, E. (2008). EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Research, 19(2), 327–335. https://doi.org/10.1101/gr.073585.107 DOI: https://doi.org/10.1101/gr.073585.107
Waples, R. S. (2015). Testing for Hardy–Weinberg Proportions: Have we lost the plot? Journal of Heredity, 106(1), 1–19. https://doi.org/10.1093/jhered/esu062 DOI: https://doi.org/10.1093/jhered/esu062
Willoughby, J. R., Fernandez, N. B., Lamb, M. C., Ivy, J. A., Lacy, R. C., and DeWoody, J. A. (2015). The impacts of inbreeding, drift and selection on genetic diversity in captive breeding populations. Molecular Ecology, 24(1), 98–110. https://doi.org/10.1111/mec.13020 DOI: https://doi.org/10.1111/mec.13020
Wright, D. (1978). Evolution and genetics of population: variability within and among natural population. University of Chicago Press.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2021 Acta Biológica Colombiana
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. La aceptación de manuscritos por parte de la revista implicará, además de su edición electrónica de acceso abierto bajo licencia Attribution-NonCommercial-ShareAlike 4.0 (CC BY NC SA), la inclusión y difusión del texto completo a través del repositorio institucional de la Universidad Nacional de Colombia y en todas aquellas bases de datos especializadas que el editor considere adecuadas para su indización con miras a incrementar la visibilidad de la revista.
2. Acta Biológica Colombiana permite a los autores archivar, descargar y compartir, la versión final publicada, así como las versiones pre-print y post-print incluyendo un encabezado con la referencia bibliográfica del articulo publicado.
3. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
4. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos institucionales, en su página web o en redes sociales cientificas como Academia, Researchgate; Mendelay) lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).