Publicado

2021-12-15

GENETIC VARIABILITY AND REPRODUCTIVE CHARACTERISTICS OF ZEBRAFISH (Cyprinidae Danio rerio) STOCKS

Variabilidad genética y características reproductivas de poblaciones de pez cebra (Cyprinidae Danio rerio)

DOI:

https://doi.org/10.15446/abc.v27n2.87739

Palabras clave:

Animal model, consanguinity, DNA, female, fish larvae (en)
Modelo animal, consanguinidad, ADN, hembra, larvas de peces (es)

Descargas

Autores/as

Specimens of cultured zebrafish acquired from different fish farms in Brazil may show genetic variability and alteration in allele frequency due to genetic drift and selective pressure in a captive environment, resulting in the differentiation of productive and reproductive characteristics. The aim of this study was to evaluate the genetic variability and reproductive characteristics of 180 zebrafish specimens from six Brazilian fish farms. A deviation from the Hardy-Weinberg equilibrium was observed in all evaluated stocks. Differentiation among stocks was observed in the amount of genetic variability with respect to observed heterozygosity and the inbreeding coefficient (FIS). Genetic distance between stocks was determined through the Fst index, and the formation of four distinct groups was observed by plotting the dendrogram based on Nei’s genetic distance. Differences were observed among reproductive parameters, such as the average number of eggs per female and hatchability. This second parameter proved to be related to the level of inbreeding of the population, whereas this effect was not observed for spawning frequency. We conclude that zebrafish stocks from the 6 different Brazilian fish farms present significant genetic and phenotypic variability. The genetic structure affects fecundity and should be considered when carrying out work where reproductive rates are evaluated.

Especímenes de pez cebra adquiridos en diferentes piscifactorías pueden mostrar variabilidad genética y alteración en la frecuencia de los alelos debido a la deriva genética y presión selectiva llevada a cabo en un ambiente cautivo, lo que resulta en la diferenciación de las características productivas y reproductivas. Este estudio busco evaluar la variabilidad genética y las características reproductivas de 180 especímenes de pez cebra adquiridos de seis piscifactorías brasileras. Hubo una desviación en el equilibrio de Hardy-Weinberg en todas las poblaciones evaluadas. Se encontró diferenciación en términos del grado de variabilidad dentro de las poblaciones, en vista de los resultados de la heterocigosidad observada y el coeficiente de endogamia (Fis). La distancia genética entre ellos se verificó usando el índice Fst, y se observó la formación de cuatro grupos distintos al trazar el dendrograma basado en la distancia genética de Nei. Se observó una diferencia en relación con los parámetros reproductivos, como el número promedio de huevos por hembra y la incubabilidad. Este segundo parámetro demostró estar relacionado con el nivel de consanguinidad de la población, y este efecto no se verificó para la frecuencia de desove. Se puede considerar que las existencias de pez cebras de diferentes lugares tienen variabilidad genética y fenotípica. La estructura genética influye principalmente en la fertilización y debe tenerse en cuenta al realizar trabajos donde se evalúan los índices reproductivos.

Referencias

Bai, W., Zhang, Z., Tian, W., He, X., Ma, Y., Zhao, Y., and Chai, Z. (2010). Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. Journal of Nanoparticle Research, 12(5):1645–54. https://doi.org/10.1007/s11051-009-9740-9 DOI: https://doi.org/10.1007/s11051-009-9740-9

Best, J., Adatto, I., Cockington, J., James, A., and Lawrence, C. (2010). A Novel Method for Rearing First-Feeding Larval Zebrafish: Polyculture with Type L Saltwater Rotifers (Brachionus plicatilis). Zebrafish, 7(3), 289–95. https://doi.org/10.1089/zeb.2010.0667 DOI: https://doi.org/10.1089/zeb.2010.0667

Brown-Peterson, N. J., Wyanski, D. M., Saborido-Rey, F., Macewicz, B. J., and Lowerre-Barbieri, S. K. (2011). A standardized terminology for describing reproductive development in fishes. Marine and Coastal Fisheries, 3(1), 52–70. https://doi.org/10.1080/19425120.2011.555724 DOI: https://doi.org/10.1080/19425120.2011.555724

Brown, A. R., Bickley, L. K., Ryan, T. A., Paull, G. C., Hamilton, P. B., Owen, S. F., Sharpe, A. D., and Tyler, C. R. (2012). Differences in sexual development in inbred and outbred zebrafish (Danio rerio) and implications for chemical testing. Aquatic Toxicology, 112–113, 27-38. https://doi.org/10.1016/j.aquatox.2012.01.017 DOI: https://doi.org/10.1016/j.aquatox.2012.01.017

Coe, T. S., Hamilton, P. B., Griffiths, A. M., Hodgson, D. J., Wahab, M. A., and Tyler, C. R. (2009). Genetic variation in strains of zebrafish (Danio rerio) and the implications for ecotoxicology studies. Ecotoxicology, 18(1), 144–50. https://doi.org/10.1007/s10646-008-0267-0 DOI: https://doi.org/10.1007/s10646-008-0267-0

Fessehaye, Y., Bovenhuis, H., Rezk, M. A., Crooijmans, R., van Arendonk, J. A. M., and Komen, H. (2009). Effects of relatedness and inbreeding on reproductive success of Nile tilapia (Oreochromis niloticus). Aquaculture, 294(3–4), 180–186. https://doi.org/S0044848609005195 DOI: https://doi.org/10.1016/j.aquaculture.2009.06.001

Frankham, R., Ballou, J., and Briscoe, D. (2008). Fundamentos de Genética da Conservação. Sociedade Brasileira de Genética.

Gallardo, J. A., García, X., Lhorente, J. P., and Neira, R. (2004). Inbreeding and inbreeding depression of female reproductive traits in two populations of Coho salmon selected using BLUP predictors of breeding values. Aquaculture, 234(1–4), 111–22. https://doi.org/10.1016/j.aquaculture.2004.01.009 DOI: https://doi.org/10.1016/j.aquaculture.2004.01.009

Goessling, W., and Sadler, K. C. (2015). Zebrafish: An Important Tool for Liver Disease Research. Gastroenterology, 149(6), 1361–77. Doi: https://doir.org/10.1053/j.gastro.2015.08.034 DOI: https://doi.org/10.1053/j.gastro.2015.08.034

Gratton, P., Allegrucci, G., Gallozzi, M., Fortunato, C., Ferreri, F., and Sbordoni, V. (2004). Allozyme and microsatellite genetic variation in natural samples of zebrafish, Danio rerio. Journal of Zoological Systematics and Evolutionary Research, 42(1), 54–62. https://doi.org/10.1046/j.0947-5745.2003.00240.x DOI: https://doi.org/10.1046/j.0947-5745.2003.00240.x

Howe, K., Clark, M. D., Torroja, C. F., Torrance, J., Berthelot, C., Muffato, M., Collins, J. E., Humphray, S., McLaren, K., Matthews, L., McLaren, S., Sealy, I., Caccamo, M., Churcher, C., Scott, C., Barrett, J. C., Koch, R., Rauch, G.-J., White, S…Stemple, D. L. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446), 498–503. https://doi.org/10.1038/nature12111 DOI: https://doi.org/10.1038/nature12111

Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11):1403–5. https://doi.org/10.1093/bioinformatics/btn129 DOI: https://doi.org/10.1093/bioinformatics/btn129

Kamvar, Z. N., Brooks, J. C., and Grünwald, N. J. (2015). Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Frontiers in Genetics Plant genetics and Genomics, 6(JUN), 1–10. http://dx.doi.org/10.3389/fgene.2015.00208 DOI: https://doi.org/10.3389/fgene.2015.00208

Kause, A., Ritola, O., Paananen, T., Wahlroos, H., Mäntysaari, E. A., and Mäntysaaria E. A. Genetic trends in growth, sexual maturity and skeletal deformations, and rate of inbreeding in a breeding programme for rainbow trout (Oncorhynchus mykiss). Aquaculture, 247(1–4):177–87. https://doi.org/10.1016/j.aquaculture.2005.02.023 DOI: https://doi.org/10.1016/j.aquaculture.2005.02.023

Kinth, P., Mahesh, G., and Panwar, Y. (2013). Mapping of zebrafish research: A global outlook. Zebrafish, 10(4), 510–507. https://doi.org/10.1089/zeb.2012.0854 DOI: https://doi.org/10.1089/zeb.2012.0854

Langen, K., Bakker, T. C. M., Baldauf, S. A., Shrestha, J., and Thünken, T. (2017a). Effects of ageing and inbreeding on the reproductive traits in a cichlid fish I: the male perspective. Biological Journal of the Linnean Society, 120(4):752–61. https://doi.org/10.1093/biolinnean/blw002 DOI: https://doi.org/10.1093/biolinnean/blw002

Langen, K., Bakker, T. C. M., Baldauf, S. A., Shrestha, J., and Thünken, T. (2017b). Effects of ageing and inbreeding on the reproductive traits in a cichlid fish II: the female perspective. Biological Journal of the Linnean Society, 120(4), 762–70. https://doi.org/10.1093/biolinnean/blw002 DOI: https://doi.org/10.1093/biolinnean/blw003

Liang, X., Souders, C. L., Zhang, J., and Martyniuk, C. J. (2017). Tributyltin induces premature hatching and reduces locomotor activity in zebrafish (Danio rerio) embryos/larvae at environmentally relevant levels. Chemosphere, 189, 498–506. https://doi.org/S0045653517315072 DOI: https://doi.org/10.1016/j.chemosphere.2017.09.093

Lopera-Barrero, N. M., Povh, J. A., Ribeiro, R. P., Gomes, P. C., Jacometo, C. B., and da Silva, T. L. (2008). Comparison of DNA extraction protocols of fish fin and larvae samples: Modified salt (NaCl) extraction. Ciencia e investigación agraria, 35(1), 65–74. https://doi.org/10.4067/rcia.v35i1.374 DOI: https://doi.org/10.4067/S0718-16202008000100008

Lopera-Barrero, N. M., Rodriguez-Rodriguez, M. D. P., Fornari, D. C., Kawakami de Resende, E., Poveda-Parra, A. R., Braccini, A. R. G, Souza, P., Furlan, F., Aparecido Povh, P. J., Pereira Ribeiro, J., andRicardo, R. (2015). Genetic variability of broodstocks of Tambaqui (Teleostei – Characidae) from the northeast region of Brazil. Semin Ciências Agrárias, 36(6), 4013. https://doi.org/10.5433/1679-0359.2015v36n6p4013 DOI: https://doi.org/10.5433/1679-0359.2015v36n6p4013

Mehlis, M., Frommen, J. G., Rahn, A. K., and Bakker, T. C. M. (2012). Inbreeding in three-spined sticklebacks (Gasterosteus aculeatus L.): effects on testis and sperm traits. Biological Journal of the Linnean Society, 107(3), 510–520. https://doi.org/10.1111/j.1095-8312.2012.01950.x DOI: https://doi.org/10.1111/j.1095-8312.2012.01950.x

Menon, A. (1999). Check list – fresh water fishes of India. NHBS 175. (366), 234–259.

Meyer, B. M., Froehlich, J. M., Galt, N. J., and Biga, P. R. (2013). Comparative Biochemistry and Physiology , Part A Inbred strains of zebra fi sh exhibit variation in growth performance and myostatin expression following fasting. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 164(1), 1–9. https://doi.org/10.1016/j.cbpa.2012.10.004 DOI: https://doi.org/10.1016/j.cbpa.2012.10.004

Mizgirev, I., and Revskoy, S. (2010). Generation of clonal zebrafish lines and transplantable hepatic tumors. Nature Protocols, 5(3), 383–94. https://doi.org/10.1038/nprot.2010.8 DOI: https://doi.org/10.1038/nprot.2010.8

Monroe, J. D., Manning, D. P., Uribe, P. M., Bhandiwad, A., Sisneros, J. A., Smith, M. E., Coffin, A. B. (2016). Hearing sensitivity differs between zebrafish lines used in auditory research. Hearing Research, 341, 220–231. https://doi.org/10.1016/j.heares.2016.09.004 DOI: https://doi.org/10.1016/j.heares.2016.09.004

Monson, C. A., and Sadler, K. C. (2010). Inbreeding Depression and Outbreeding Depression Are Evident in Wild-Type Zebrafish Lines. Zebrafish, 7(2), 189–197. https://doi.org/10.1089/zeb.2009.0648 DOI: https://doi.org/10.1089/zeb.2009.0648

Moreira, A. A., Hilsdorf, A. W. S., Silva, J. V da, Souza VR de. (2007). Variabilidade genética de duas variedades de tilápia nilótica por meio de marcadores microssatélites. Pesqui Agropecuária Brasil, 42(4), 521–526. http://dx.doi.org/10.1590/S0100-204X2007000400010 DOI: https://doi.org/10.1590/S0100-204X2007000400010

Mrakovcic M, Haley LE. (2004). Inbreeding depression in the Zebrafish Brachydanio rerio (Hamilton Buchanan). Aquaculture, 234(1–4), 111–22. https://doi.org/S0044848604000328

Nakadate, M., Shikano, T., and Taniguchi, N. (2003). Inbreeding depression and heterosis in various quantitative traits of the guppy, Poecilia reticulata. Aquaculture 220(1–4), 219–226. https://doi.org/10.1016/S0044-8486(02)00432-5 DOI: https://doi.org/10.1016/S0044-8486(02)00432-5

Nasiadka, A., and Clark, M. D. (2012). Zebrafi Breeding in the Laboratory Environment. ILAR J. 53(2), 161–168. DOI: https://doi.org/10.1093/ilar.53.2.161

Pamanji, R., and Yashwanth, B. Venkateswara Rao, J. (2016). Profenofos induced biochemical alterations and in silico modelling of hatching enzyme, ZHE1 in zebrafish (Danio rerio) embryos. Environmental Toxicology and Pharmacology, 45, 123–31. https://doi.org/10.1016/j.etap.2016.05.027 DOI: https://doi.org/10.1016/j.etap.2016.05.027

Peakall, R., and Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics, 28(19), 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 DOI: https://doi.org/10.1093/bioinformatics/bts460

Rodriguez-Rodriguez, M., Lopera-Barrero, N. M., Ribeiro, R. P., Povh, J. A., Vargas, L., Sirol, R. N., and Jacometoet, C. B. (2010). Diversidad genética de piracanjuba usada en programas de repoblación con marcadores microsatélites. Pesquisa Agropecuária Brasileira, 45(1), 56–63. https://doi.org/10.1590/S0100-204X2010000100008 DOI: https://doi.org/10.1590/S0100-204X2010000100008

Santoriello, C., and Zon, L. I. (2012). Science in medicine Hooked ! Modeling human disease in zebrafish. The Journal of Clinical Investigation, 122(7), 2337–2343. https://doi.org/10.1172/JCI60434 DOI: https://doi.org/10.1172/JCI60434

Santos, C. H. A., Santana, G. X., Sá Leitão, C. S., Paula-Silva, M. N., and Almeida-Val, V. M. F. (2016). Loss of genetic diversity in farmed populations of Colossoma macropomum estimated by microsatellites. Animal Genetics, 47(3), 373–376. https://doi.org/10.1111/age.12422 DOI: https://doi.org/10.1111/age.12422

Shimoda, N., Knapik, E. W., Ziniti, J., Sim, C., Yamada, E., Kaplan, S., Frederic de Sauvage, D. J., Jacob, H., and Fishmana, M. C. (1999). Zebrafish genetic map with 2000 microsatellite markers. Genomics 58(3), 219–32. https://doi.org/10.1006/geno.1999.5824 DOI: https://doi.org/10.1006/geno.1999.5824

Silva, D., Cortinhas, M. C., Kersanach., R., Proietti., M., Cestari Dumonta, L. F., D’Incao, F., Lacerda, A. L. F., Sanmartin Prata, P., Matoso, D. A., Bueno Noleto, R., Ramsdorf, W., Aiex Boni, T., Prioli, A. J., and Cestari, M. M. (2016). Genetic structuring among silverside fish (Atherinella brasiliensis) populations from different Brazilian regions. Estuarine, Coastal and Shelf Science, 178, 148–157. https://doi.org/10.1016/j.ecss.2016.06.007 DOI: https://doi.org/10.1016/j.ecss.2016.06.007

Su, G. -S., Liljedahl, L. -E., and Gall, G. A. E. (1995). Effects of inbreeding on growth and reproductive traits in rainbow trout (Oncorhynchus mykiss). Aquaculture, 142(3-4), 139–48. https://doi.org/10.1016/0044-8486(96)01255-0 DOI: https://doi.org/10.1016/0044-8486(96)01255-0

Vignet, C., Bégout, M. -L., Péan, S., Lyphout, L., Leguay, D., and Cousin, X. (2013). Systematic Screening of Behavioral Responses in Two Zebrafish Strains. Zebrafish, 10(3), 365–75. https://doi.org/10.1089/zeb.2013.0871 DOI: https://doi.org/10.1089/zeb.2013.0871

Vilella, A. J., Severin, J., Ureta-Vidal, A., Heng, L., Durbin, R., and Birney, E. (2008). EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Research, 19(2), 327–335. https://doi.org/10.1101/gr.073585.107 DOI: https://doi.org/10.1101/gr.073585.107

Waples, R. S. (2015). Testing for Hardy–Weinberg Proportions: Have we lost the plot? Journal of Heredity, 106(1), 1–19. https://doi.org/10.1093/jhered/esu062 DOI: https://doi.org/10.1093/jhered/esu062

Willoughby, J. R., Fernandez, N. B., Lamb, M. C., Ivy, J. A., Lacy, R. C., and DeWoody, J. A. (2015). The impacts of inbreeding, drift and selection on genetic diversity in captive breeding populations. Molecular Ecology, 24(1), 98–110. https://doi.org/10.1111/mec.13020 DOI: https://doi.org/10.1111/mec.13020

Wright, D. (1978). Evolution and genetics of population: variability within and among natural population. University of Chicago Press.

Cómo citar

APA

Lewandowski, V., Sary, C., Casetta, J., de Souza, F. P., de Castro, P. L., Goes, E. S. dos R., de Oliveira, C. A. L., Ribeiro, R. P. y Vargas, L. (2021). GENETIC VARIABILITY AND REPRODUCTIVE CHARACTERISTICS OF ZEBRAFISH (Cyprinidae Danio rerio) STOCKS. Acta Biológica Colombiana, 27(2), 223 231. https://doi.org/10.15446/abc.v27n2.87739

ACM

[1]
Lewandowski, V., Sary, C., Casetta, J., de Souza, F.P., de Castro, P.L., Goes, E.S. dos R., de Oliveira, C.A.L., Ribeiro, R.P. y Vargas, L. 2021. GENETIC VARIABILITY AND REPRODUCTIVE CHARACTERISTICS OF ZEBRAFISH (Cyprinidae Danio rerio) STOCKS. Acta Biológica Colombiana. 27, 2 (dic. 2021), 223 231. DOI:https://doi.org/10.15446/abc.v27n2.87739.

ACS

(1)
Lewandowski, V.; Sary, C.; Casetta, J.; de Souza, F. P.; de Castro, P. L.; Goes, E. S. dos R.; de Oliveira, C. A. L.; Ribeiro, R. P.; Vargas, L. GENETIC VARIABILITY AND REPRODUCTIVE CHARACTERISTICS OF ZEBRAFISH (Cyprinidae Danio rerio) STOCKS. Acta biol. Colomb. 2021, 27, 223 231.

ABNT

LEWANDOWSKI, V.; SARY, C.; CASETTA, J.; DE SOUZA, F. P.; DE CASTRO, P. L.; GOES, E. S. dos R.; DE OLIVEIRA, C. A. L.; RIBEIRO, R. P.; VARGAS, L. GENETIC VARIABILITY AND REPRODUCTIVE CHARACTERISTICS OF ZEBRAFISH (Cyprinidae Danio rerio) STOCKS. Acta Biológica Colombiana, [S. l.], v. 27, n. 2, p. 223 231, 2021. DOI: 10.15446/abc.v27n2.87739. Disponível em: https://revistas.unal.edu.co/index.php/actabiol/article/view/87739. Acesso em: 8 ene. 2025.

Chicago

Lewandowski, Vanessa, Cesar Sary, Jaisa Casetta, Felipe Pinheiro de Souza, Pedro Luiz de Castro, Elenice Souza dos Reis Goes, Carlos Antonio Lopes de Oliveira, Ricardo Pereira Ribeiro, y Lauro Vargas. 2021. «GENETIC VARIABILITY AND REPRODUCTIVE CHARACTERISTICS OF ZEBRAFISH (Cyprinidae Danio rerio) STOCKS». Acta Biológica Colombiana 27 (2):223 231. https://doi.org/10.15446/abc.v27n2.87739.

Harvard

Lewandowski, V., Sary, C., Casetta, J., de Souza, F. P., de Castro, P. L., Goes, E. S. dos R., de Oliveira, C. A. L., Ribeiro, R. P. y Vargas, L. (2021) «GENETIC VARIABILITY AND REPRODUCTIVE CHARACTERISTICS OF ZEBRAFISH (Cyprinidae Danio rerio) STOCKS», Acta Biológica Colombiana, 27(2), p. 223 231. doi: 10.15446/abc.v27n2.87739.

IEEE

[1]
V. Lewandowski, «GENETIC VARIABILITY AND REPRODUCTIVE CHARACTERISTICS OF ZEBRAFISH (Cyprinidae Danio rerio) STOCKS», Acta biol. Colomb., vol. 27, n.º 2, p. 223 231, dic. 2021.

MLA

Lewandowski, V., C. Sary, J. Casetta, F. P. de Souza, P. L. de Castro, E. S. dos R. Goes, C. A. L. de Oliveira, R. P. Ribeiro, y L. Vargas. «GENETIC VARIABILITY AND REPRODUCTIVE CHARACTERISTICS OF ZEBRAFISH (Cyprinidae Danio rerio) STOCKS». Acta Biológica Colombiana, vol. 27, n.º 2, diciembre de 2021, p. 223 231, doi:10.15446/abc.v27n2.87739.

Turabian

Lewandowski, Vanessa, Cesar Sary, Jaisa Casetta, Felipe Pinheiro de Souza, Pedro Luiz de Castro, Elenice Souza dos Reis Goes, Carlos Antonio Lopes de Oliveira, Ricardo Pereira Ribeiro, y Lauro Vargas. «GENETIC VARIABILITY AND REPRODUCTIVE CHARACTERISTICS OF ZEBRAFISH (Cyprinidae Danio rerio) STOCKS». Acta Biológica Colombiana 27, no. 2 (diciembre 15, 2021): 223 231. Accedido enero 8, 2025. https://revistas.unal.edu.co/index.php/actabiol/article/view/87739.

Vancouver

1.
Lewandowski V, Sary C, Casetta J, de Souza FP, de Castro PL, Goes ES dos R, de Oliveira CAL, Ribeiro RP, Vargas L. GENETIC VARIABILITY AND REPRODUCTIVE CHARACTERISTICS OF ZEBRAFISH (Cyprinidae Danio rerio) STOCKS. Acta biol. Colomb. [Internet]. 15 de diciembre de 2021 [citado 8 de enero de 2025];27(2):223 231. Disponible en: https://revistas.unal.edu.co/index.php/actabiol/article/view/87739

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

509

Descargas

Los datos de descargas todavía no están disponibles.