Publicado
Ambystoma mexicanum, a model organism in developmental biology and regeneration: a colombian experience
Ambystoma mexicanum, un organismo modelo en biología del desarrollo y regeneración: experiencia colombiana
DOI:
https://doi.org/10.15446/abc.v27n1.88309Palabras clave:
Animal model, Axololts, Development, Embryonic Development, salamanders (en)salamandras, modelo animal, desarrollo embrionario, desarrollo, Ajolote (es)
Descargas
Ambystoma mexicanum is a urodele amphibian endemic to Xochimilco Lake in Mexico, it belongs to the salamander family Ambystomatidae. This species has frequently been used as model organism in developmental biology and regeneration laboratories around the world due to its broad regenerative capacities and adaptability to laboratory conditions. In this review we describe the establishment of the first colony of axolotls in Colombia to study tissue regeneration and our perspectives on the use A. mexicanum as a model organism in Colombia are discussed emphasizing its possible uses in regeneration and developmental biology
Ambystoma mexicanum es un anfibio urodelo endémico del lago Xochimilco en México, perteneciente a la familia de salamandras Ambystomatidae. Esta especie se ha empleado frecuentemente como organismo modelo en laboratorios de biología del desarrollo y regeneración alrededor del mundo, dadas sus amplias capacidades regenerativas y adaptabilidad en condiciones de laboratorio. En esta revisión, se describe el establecimiento de la primera colonia de ajolotes en Colombia, para adelantar estudios de regeneración de tejidos, y se discuten las perspectivas de A. mexicanum como organismo modelo en el país, enfatizando sus posibles usos en regeneración y biología del desarrollo
Referencias
Acosta-Galvis, A. R. (01 de enero de 2019). Lista de los Anfibios de Colombia. http://www.batrachia.com
Acosta-Galvis, A. R., and Gutiérrez-Lamus, D. L. (2012). A new species of salamander (Bolitoglossa: Plethodontidae) from the Cordillera Oriental of the Colombian Andes. Papéis Avulsos Zoología, 52(18), 201–18. https://doi.org/10.1590/S0031-10492012001800001 DOI: https://doi.org/10.1590/S0031-10492012001800001
Aguilar-Miguel, X., Legorreta, G. B., and Casas-Andreu, G. (2009). Reproducción ex situ en Ambystoma granulosum y Ambystoma lermaense (Amphibia: Ambystomatidae). Acta Zoológica Mexicana, 25(3), 443–54. https://doi.org/10.21829/azm.2009.253652 DOI: https://doi.org/10.21829/azm.2009.253652
Akle, V., Agudelo-Dueñas, N., Molina-Rodríguez, A., Kartchner, L. B., Ruth, A. M., Gonzalez, J. M., and Forero-Shelton, M. (2017). Establishment of Larval Zebrafish as an Animal Model to Investigate Trypanosoma cruzi Motility In Vivo. Journal of Visualized Experiments, 30(127), 56238. https://doi.org/10.3791/56238 DOI: https://doi.org/10.3791/56238
Arenas, C. M., Gómez-Molina, A., and Delgado, J. P. (2015). Maintaining plethodontid salamanders in the laboratory for regeneration studies. Methods in Molecular Biology, 1290, 71–8. https://doi.org/10.1007/978-1-4939-2495-0_5 DOI: https://doi.org/10.1007/978-1-4939-2495-0_5
Arenas Gómez, C. M., Woodcock, R. M., Smith, J. J., Voss, R. S., and Delgado, J. P. (2018). Using transcriptomics to enable a plethodontid salamander (Bolitoglossa ramosi) for limb regeneration research. BMC Genomics. 19, 704, 30253734. https://doi.org/10.1186/s12864-018-5076-0 DOI: https://doi.org/10.1186/s12864-018-5076-0
Arenas Gómez, C. M., Gomez Molina, A., Zapata, J. D., and Delgado, J. P. (2017). Limb regeneration in a direct-developing terrestrial salamander, Bolitoglossa ramosi (Caudata: Plethodontidae). Regeneration. 4(4), 227–35. https://doi.org/10.1002/reg2.93 DOI: https://doi.org/10.1002/reg2.93
Bahr, J. M. (2008). The chicken as a model organism. In P.M. Conn (Ed.). Sourcebook of Models for Biomedical Research. Humana Press. https://doi.org/10.1007/978-1-59745-285-4_18 DOI: https://doi.org/10.1007/978-1-59745-285-4_18
Bellairs, R., and Osmond, M. (2014). Atlas of Chick Development (3 Ed). Elsevier Inc. https://doi.org/10.1016/C2010-0-65149-2 DOI: https://doi.org/10.1016/C2010-0-65149-2
Blum, M, and Ott, T. (2018). Xenopus: An Undervalued Model Organism to Study and Model Human Genetic Disease. Cells Tissues Organs, 205(5-6), 303–13. https://doi.org/10.1159/000490898 DOI: https://doi.org/10.1159/000490898
Brandon, R. A. (1989). Natural history of the axolotl and its relationship to other ambystomatid salamanders (p. 13–24).Oxford University.
Brockes, J. P. (1998). Regeneration and cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1377(1), 1–11. https://doi.org/10.1016/S0304-419X(97)00029-2 DOI: https://doi.org/10.1016/S0304-419X(97)00029-2
Brockes, J. P., and Kumar, A. (2008). Comparative aspects of animal regeneration. Annual Review of Cell and Developmental Biology, 24, 525–549. https://doi.org/10.1146/annurev.cellbio.24.110707.175336 DOI: https://doi.org/10.1146/annurev.cellbio.24.110707.175336
Browne, R. A., and Wanigasekera, G. (2000). Combined effects of salinity and temperature on survival and reproduction of five species of Artemia. Journal of Experimental Marine Biology and Ecology, 244(1), 44–29. https://doi.org/10.1016/S0022-0981(99)00125-2 DOI: https://doi.org/10.1016/S0022-0981(99)00125-2
Bruce, R. C. (2003). Chapter 13. Life Histories. Reproductive Biology and Phylogeny of Urodela. Western Carolina University.
Bryant, D. M., Johnson, K., Ditommaso, T., Tickle, T., Couger, M. B., Payzin-Dogru, D., Lee, T. J., Leigh, N. D., Kuo, T. -H., Davis, F. G., Bateman, J., Bryant, S., Guzikowski, A. R., Tsai, S. L., Coyne, S., Ye, W. W., Freeman Jr., R. M., Peshkin, L., … Whited, J. L. (2017). A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors. Cell Reports. 18(3), 762–76. https://doi.org/10.1016/j.celrep.2016.12.063. DOI: https://doi.org/10.1016/j.celrep.2016.12.063
Cano-Martínez, A., Vargas-González, A., Guarner-Lans, V., León-Olea, M., and Nieto-lima, B. (2010). Functional and structural regeneration in the axolotl heart (Ambystoma mexicanum) after partial ventricular amputation. 80(2):79–86.
Carbonell M, B., Bayona R, F., Garavito-Aguilar, Z., Parada B, C., Arboleda G, H. and Infante-Contreras, C. (2018). Hey1 gene expression patterns during the development of branchial arches and facial prominences. RevistaMVZ Córdoba, 23(3), 6813–25. DOI: https://doi.org/10.21897/rmvz.1370
Carbonell M, B., Zapata Cardona, J., and Delgado, J. (2021). Hydrogen peroxide is necessary during tail regeneration in juvenile axolotl. Developmental Dynamics : An Official Publication of the American Association of Anatomists. https://doi.org/10.1002/DVDY.386 DOI: https://doi.org/10.1002/dvdy.386
Carlson, M. R. J., Komine, Y., Bryant, S. V., and Gardiner, D. M. (2001). Expression of Hoxb13 and Hoxc10 in developing and regenerating axolotl limbs and tails. Developmental Biology, 229(2), 396–406. https://doi.org/10.1006/dbio.2000.0104 DOI: https://doi.org/10.1006/dbio.2000.0104
Charbonneau, A. M., Roy, S., and Tran, S. D. (2016). Oral-Facial Tissue Reconstruction in the Regenerative Axolotl. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 326(8), 489–502. https://doi.org/10.1002/jez.b.22723 DOI: https://doi.org/10.1002/jez.b.22723
Chaves, H., Villalba, C., Lagos, L., Vargas, R., Martínez-Wittinghan, F., Clavijo, C., and Camacho, M. (2003). Expresión de canales de potasio voltaje dependientes en ovocitos de Xenopus laevis (Amphibia). Acta Biológica Colombiana, 8, 59–67.
Chernoff, E. A. G., Stocum, D. L., Nye, H. L. D., and Cameron, J. A. (2003). Urodele spinal cord regeneration and related processes. Developmental Dynamics, 226(2), 295–307. https://doi.org/10.1002/dvdy.10240 DOI: https://doi.org/10.1002/dvdy.10240
Clarke, J. D. W., Alexander, R., and Holder, N. (1988). Regeneration of descending axons in the spinal cord of the axolotl. Neuroscience Letters, 89(1), 1–6. https://doi.org/10.1016/0304-3940(88)90471-5. DOI: https://doi.org/10.1016/0304-3940(88)90471-5
Contreras, V., Martínez-Meyer, E., Valiente, E., and Zambrano, L. (2009). Recent decline and potential distribution in the last remnant area of the microendemic Mexican axolotl (Ambystoma mexicanum). Biological Conservation, 142(12), 2881-2885. https://doi.org/10.1016/j.biocon.2009.07.008 DOI: https://doi.org/10.1016/j.biocon.2009.07.008
Crowner, A., Khatri, S., Blichmann, D., and Voss, S. R. (2019). Rediscovering the axolotl as a model for thyroid hormone dependent development. Frontiers Endocrinology, 10:1–6. https://doi.org/10.3389/fendo.2019.00237 DOI: https://doi.org/10.3389/fendo.2019.00237
Davaapil, H., Brockes, J. P., and Yun, M. H. (2017). Conserved and novel functions of programmed cellular senescence during vertebrate development. Development, 144(1), 106–14. https://doi.org/10.1242/dev.138222 DOI: https://doi.org/10.1242/dev.138222
DeNardo, D. (1995). Amphibians as Laboratory Animals. ILAR Journal 37(4), 173–81. https://doi.org/10.1093/ilar.37.4.173 DOI: https://doi.org/10.1093/ilar.37.4.173
Dwaraka, V. B., and Voss, S. R. (2019). Towards comparative analyses of salamander limb regeneration. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 336(2), 129-144. https://doi.org/10.1002/jez.b.22902 DOI: https://doi.org/10.1002/jez.b.22902
Echeverri, K., and Tanaka, E. M. (2003). Electroporation as a tool to study in vivo spinal cord regeneration. Developmental Dynamics, 226(2), 418–25. https://doi.org/10.1002/dvdy.10238 DOI: https://doi.org/10.1002/dvdy.10238
Echeverri, K., Clarke, J. D. W., and Tanaka, E. M. (2001). In vivo imaging indicates muscle fiber dedifferentiation is a major contributor to the regenerating tail blastema. Developmental Biology, 236(1), 151–64. https://doi.org/10.1006/dbio.2001.0312 DOI: https://doi.org/10.1006/dbio.2001.0312
Echeverri, K., and Tanaka, E. M. (2002). Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science, 298(5600), 1993–1996. https://doi.org/10.1126/science.1077804 DOI: https://doi.org/10.1126/science.1077804
Eisthen, H. L., and Krause, B. C. (2012). Ambiguities in the relationship between gonadal steroids and reproduction in axolotls (Ambystoma mexicanum). General and Comparative Endocrinology, 76(3), 472–80. https://doi.org/10.1016/j.ygcen.2011.12.034 DOI: https://doi.org/10.1016/j.ygcen.2011.12.034
Farkas, J. E., and Monaghan, J. R. (2015). Housing and Maintenance of Ambystoma mexicanum. En A. Kumar, and A. Simon (Ed.). Salamanders in Regeneration Research (pp. 27–46). https://doi.org/10.1007/978-1-4939-2495-0_3 DOI: https://doi.org/10.1007/978-1-4939-2495-0_3
Fei, J. -F., Lou, W. P. -K., Knapp, D., Murawala, P., Gerber, T., Taniguchi, Y., Nowoshilow, S., Khattak, S., and Tanaka, E. M. (2018). Application and optimization of CRISPR–Cas9-mediated genome engineering in axolotl (Ambystoma mexicanum). Nature Protocols, 13, 2908–2943. https://doi.org/10.1038/s41596-018-0071-0 DOI: https://doi.org/10.1038/s41596-018-0071-0
Fei, J. -F., Schuez, M., Tazaki, A., Taniguchi, Y., Roensch, K., and Tanaka, E. M. (2014). CRISPR-mediated genomic deletion of Sox2 in the axolotl shows a requirement in spinal cord neural stem cell amplification during tail regeneration. Stem Cell Reports, 3(3), 444–459. https://doi.org/10.1016/j.stemcr.2014.06.018 DOI: https://doi.org/10.1016/j.stemcr.2014.06.018
Fior, J. (2014). Salamander Regeneration as a Model for Developing Novel Regenerative and Anticancer Therapies. Journal of Cancer, 5(8), 715–719. https://doi.org/10.7150/jca.9971 DOI: https://doi.org/10.7150/jca.9971
Frankham, R., Ballou, J., Ralls, K., Eldridge, M., Dudash, M. R., Fenster, C. B., Lacy, R. C., and Sunnucks, P. (2017). Genetic management of fragmented animal and plant populations. Oxford Scholarship Online. https://doi.org/10.1093/oso/9780198783398.001.0001 DOI: https://doi.org/10.1093/oso/9780198783398.001.0001
Freitas, P. D., Lovely, A. M., and Monaghan, J. R. (2019). Investigating Nrg1 Signaling in the Regenerating Axolotl Spinal Cord Using Multiplexed FISH. Developmental Neurobiology, 79(5), 453–67. https://doi.org/10.1002/dneu.22670 DOI: https://doi.org/10.1002/dneu.22670
Fröbisch, N. B., Bickelmann, C., Olori, J. C., and Witzmann, F. (2015). Deep-time evolution of regeneration and preaxial polarity in tetrapod limb development. Nature, 527, 231-234. https://doi.org/10.1038/nature15397 DOI: https://doi.org/10.1038/nature15397
Fröbisch, N. B., and Shubin, N. H. (2011). Salamander limb development: integrating genes, morphology, and fossils. Developmental Dynamics, 240(5), 1087–1099. https://doi.org/10.1002/dvdy.22629 DOI: https://doi.org/10.1002/dvdy.22629
Galeano, S., Urbina, J., Gutiérrez Cárdenas, P. D. A., Rivera-Correa, M., and Páez, V. (2006). Los anfibios de Colombia, diversidad y estado del conocimiento. In M. E. Cháves and M. Santamaría (Eds.). Informe Nacional sobre el Avance en el Conocimiento y la Información de la Biodiversidad1998-2004 (pp. 106–118). Instituto de Investigaciones Biológicas Alexander von Humboldt.
Gerber, T., Murawala, P., Knapp, D., Masselink, W., Schuez, M., Hermann, S., Gac-Santel, M., Nowoshilow, S., Kageyama, J., Khattak, S., Currie, J. D., Camp, J. G., Tanaka, E. M., and Treutlein, B. (2018). Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science, 362(6413), eaaq0681. https://doi.org/10.1126/science.aaq0681 DOI: https://doi.org/10.1126/science.aaq0681
Ghosh, S., Roy, S., Séguin, C., Bryant, S. V., and Gardiner, D. M. (2008). Analysis of the expression and function of Wnt-5a and Wnt-5b in developing and regenerating axolotl (Ambystoma mexicanum) limbs. Development, Growth & Differentiation. 50(4), 289–97. https://doi.org/10.1111/j.1440-169X.2008.01000.x DOI: https://doi.org/10.1111/j.1440-169X.2008.01000.x
Godwin, J., Debuque, R., Salimova, E., Rosenthal, N. A. (2017). Heart regeneration in the salamander relies on macrophage-mediated control of fibroblast activation and the extracellular landscape. NPJ Regenerative Medicine, 2(22). https://doi.org/10.1038/s41536-017-0027-y DOI: https://doi.org/10.1038/s41536-017-0027-y
Grainger, R. M. (2012). Xenopus tropicalis as a Model Organism for Genetics and Genomics: Past, Present, and Future. Methods in Molecular Biology (Vol. 917, pp. 3–15). NIH Public Access. https://doi.org/10.1007/978-1-61779-992-1_1 DOI: https://doi.org/10.1007/978-1-61779-992-1_1
Gresens, J. (2004). An introduction to the Mexican axolotl (Ambystoma mexicanum). Lab Anim, 33, 41–7. https://doi.org/10.1038/laban1004-41 DOI: https://doi.org/10.1038/laban1004-41
Haas, B. J., and Whited, J. L. (2017). Advances in Decoding Axolotl Limb Regeneration. Trends in Genetics, 33(8), 553–65. https://doi.org/10.1016/j.tig.2017.05.006 DOI: https://doi.org/10.1016/j.tig.2017.05.006
Heasman, J. (2006). Patterning the early Xenopus embryo. Development, 133(7), 1205–1217. https://doi.org/10.1242/dev.02304 DOI: https://doi.org/10.1242/dev.02304
Hogan, B. M., Verkade, H., Lieschke, G. J., and Heath, J. K. (2008). Manipulation of gene expression during zebrafish embryonic development using transient approaches. Methods in Molecular Biology, 469, 273–300. https://doi.org/10.1007/978-1-60327-469-2_19 DOI: https://doi.org/10.1007/978-1-60327-469-2_19
Horb, M., Wlizla, M., Abu-Daya, A., McNamara, S., Gajdasik, D., Igawa, T., Suzuki, A., Ogino, H., Noble, A., Nicolas, M., Lafond, T., Boujard, D., Audic, Y., Guillet, B., Kashiwagi, A., Kashiwagi, K., Suzuki, N., Tazawa, I., Ochi, H., … Guille, M. (2019). Xenopus resources: Transgenic, inbred and mutant animals, training opportunities, and web-based support. Frontiers in Physiology, 10, 387. https://doi.org/10.3389/fphys.2019.00387 DOI: https://doi.org/10.3389/fphys.2019.00387
Huggins, P., Johnson, C. K., Schoergendorfer, A., Putta, S., Bathke, A. C., Stromberg, A. J., and Voss, S. R. (2012). Identification of differentially expressed thyroid hormone responsive genes from the brain of the Mexican Axolotl (Ambystoma mexicanum). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology; 155(1), 128–35. https://doi.org/10.1016/j.cbpc.2011.03.006. DOI: https://doi.org/10.1016/j.cbpc.2011.03.006
Jelinek R. (1982). Use of chick embryo in screening for embryotoxicity. Teratogenesis, Carcinogenesis, and Mutagenesis. 2(3-4), 255–61. https://doi.org/10.1002/1520-6866(1990)2:3/4<255::AID-TCM1770020307>3.0.CO;2-M DOI: https://doi.org/10.1002/1520-6866(1990)2:3/4<255::AID-TCM1770020307>3.0.CO;2-M
Johnson, C. K., and Voss, S. R. (2013). Salamander Paedomorphosis. Linking Thyroid Hormone to Life History and Life Cycle Evolution. Current Topics in Developmental Biology (Vol. 103, 1st Ed). Elsevier Inc. https://doi.org/10.1016/B978-0-12-385979-2.00008-3 DOI: https://doi.org/10.1016/B978-0-12-385979-2.00008-3
Joven, A., Elewa, A., y Simon, A. (2019). Model systems for regeneration: Salamanders. Development, 146(14):dev167700. https://doi.org/10.1242/dev.167700 DOI: https://doi.org/10.1242/dev.167700
Joven, A., and Simon, A. (2018). Homeostatic and regenerative neurogenesis in salamanders. Progress in Neurobiology, 170, 81–98. https://doi.org/10.1016/j.pneurobio.2018.04.006 DOI: https://doi.org/10.1016/j.pneurobio.2018.04.006
Keinath, M. C., Timoshevskiy, V. A., Timoshevskaya, N. Y., Tsonis, P. A., Voss, S. R., and Smith, J. J. (2015a). Initial characterization of the large genome of the salamander Ambystoma mexicanum using shotgun and laser capture chromosome sequencing. Scientific Reports, 5, 16413. https://doi.org/10.1038/srep16413
Keinath, M. C., Timoshevskiy, V. A., Timoshevskaya, N. Y., Tsonis, P. A., Voss, S. R., and Smith, J. J. (2015b). Initial characterization of the large genome of the salamander Ambystoma mexicanum using shotgun and laser capture chromosome sequencing. Scientific Reports, 5, 16413. https://doi.org/10.1038/srep16413 DOI: https://doi.org/10.1038/srep16413
Kerney, R. R. , Hanken, J., and Blackburn, D. C. (2018). Early limb patterning in the direct-developing salamander Plethodon cinereus revealed by sox9 and col2a1. Evolution & Development, 20(3-4), 100–7. https://doi.org/10.1111/ede.12250 DOI: https://doi.org/10.1111/ede.12250
Khattak, S., Murawala, P., Andreas, H., Kappert, V., Schuez, M., Sandoval-Guzmán, T., Crawford, K., and Tanaka, E. M. (2014). Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination. Nature Protocols, 9, 529–40. https://doi.org/10.1038/nprot.2014.040. DOI: https://doi.org/10.1038/nprot.2014.040
Khattak, S., Richter, T., and Tanaka, E. M. (2009). Generation of transgenic axolotls (Ambystoma mexicanum). Cold Spring Harb Protoc, 4. https://doi.org/10.1101/pdb.prot5264 DOI: https://doi.org/10.1101/pdb.prot5264
Khattak, S., Schuez, M., Richter, T., Knapp, D., Haigo, S. L., Sandoval-Guzmán, T., Hradlikova, K., Duemmler, A., Kerney, R., and Tanaka, E. M. (2013). Germline transgenic methods for tracking cells and testing gene function during regeneration in the axolotl. Stem Cell Reports, 1(1), 90–103. https://doi.org/10.1016/j.stemcr.2013.03.002 DOI: https://doi.org/10.1016/j.stemcr.2013.03.002
Khattak, S., and Tanaka, E. M. (2015). Transgenesis in axolotl (Ambystoma mexicanum). Methods in Molecular Biology, 1290, 269–77. doi: https://doi.org/10.1007/978-1-4939-2495-0_21 DOI: https://doi.org/10.1007/978-1-4939-2495-0_21
Khudoley, V. V., and Eliseiv, V. V. (1979). Multiple melanomas in the axolotl Ambystoma mexicanum. Journal of the National Cancer Institute, 63, 101–3.
Kim, W. (1996). Amphibian Maintenance Facilities at Sogang. University Korea.
Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., and Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Developmental Dynamics, 203(3), 253–310. https://doi.org/10.1002/aja.1002030302 DOI: https://doi.org/10.1002/aja.1002030302
Kragl, M., Knapp, D., Nacu, E., Khattak, S., Maden, M., Epperlein, H. H., and Tanaka, E. M. (2009). Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature, 460, 60–65. https://doi.org/10.1038/nature08152 DOI: https://doi.org/10.1038/nature08152
Kumar, A., Godwin, J. W., Gates, P. B., Garza-Garcia, A. A., and Brockes, J. P. (2007). Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science, 318(5851), 772–777. https://doi.org/10.1126/science.1147710 DOI: https://doi.org/10.1126/science.1147710
Lannoo, M. J., Lowcock, L., and Bogart, J. P. (1989). Sibling cannibalism in noncannibal morph Ambystoma tigrinum larvae and its correlation with high growth rates and early metamorphosis. Canadian Journal of Zoology, 67(8), 1911–1914. https://doi.org/10.1139/z89-273 DOI: https://doi.org/10.1139/z89-273
Ponomarevaa, L. V., Athippozhyb, A., Thorson, J. S., and Voss, S. R. (2015). Using Ambystoma mexicanum (Mexican Axolotl) Embryos, Chemical Genetics, and 2 Microarray Analysis to Identify Signaling Pathways Associated with Tissue Regeneration. Comparative Biochemistry and Physiology, 178, 128–135. https://doi.org/10.1016/j.cbpc.2015.06.004
Lavery, D. L., and Hoppler, S. (2008). Gain-of-Function and Loss-of-Function Strategies in Xenopus. Methods in Molecular Biology, 469, 401–15. https://doi.org/10.1007/978-1-60327-469-25 DOI: https://doi.org/10.1007/978-1-60327-469-25
Lin, H. -J., Lee, S. -H., Wu, J. -L., Duann, Y. -F., and Chen, J. -Y. (2013). Development of Cre-loxP technology in zebrafish to study the regulation of fish reproduction. Fish Physiology and Biochemistry, 39, 1525–1539. https://doi.org/10.1007/s10695-013-9806-6 DOI: https://doi.org/10.1007/s10695-013-9806-6
Marcellini, S., González, F., Sarrazin, A. F., Pabón-Mora, N., Benítez, M., Piñeyro-Nelson, A., Rezende, G. L., Maldonado, E., Schneider, P. N., Grizante, M. B., Da Fonseca, R. N., Vergara-Silva, F., Suaza-Gaviria, V., Zumajo-Cardona, C., Zattara, E. E., Casasa, S., Suárez-Baron, H., and Brown, F. D. (2017). Evolutionary Developmental Biology (Evo-Devo) Research in Latin America. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 328(1-2), 5–40. https://doi.org/10.1002/jez.b.22687 DOI: https://doi.org/10.1002/jez.b.22687
Marques, I. J., Lupi, E., and Mercader, N. (2019). Model systems for regeneration: Zebrafish. Development, 146(18), dev167692. https://doi.org/10.1242/dev.167692 DOI: https://doi.org/10.1242/dev.167692
McCusker, C., and Gardiner, D. M. (2011). The axolotl model for regeneration and aging research: A mini-review. Gerontology, 57, 565–71. https://doi.org/10.1159/000323761 DOI: https://doi.org/10.1159/000323761
Mchedlishvili, L., Mazurov, V., Grassme, K. S., Goehler, K., Robl, B., Tazaki, A., Roensch, K., Duemmler, A., and Tanaka, E. M. (2012). Reconstitution of the central and peripheral nervous system during salamander tail regeneration. Proceedings of the National Academy of Sciences of the United States of America, 109(34), E2258-E2266. https://doi.org/10.1073/pnas.1116738109 DOI: https://doi.org/10.1073/pnas.1116738109
Meyers, J. R. (2018). Zebrafish: Development of a Vertebrate Model Organism. Current Protocols Essential Laboratory Techniques, 16(1). https://doi.org/10.1002/cpet.19 DOI: https://doi.org/10.1002/cpet.19
Meza Lasso, D., Peña Barrera, C., Bayona Rodríguez, F., Carbonell Madina, B., and Infante Contreras, C. (2016). Expresión de los genes serrate1 y notch1 durante el desarrollo del tercio medio facial del embrión de pollo. Acta Biológica Colombiana, 21(1), 175–82. https://doi.org/10.15446/abc.v21n1.49336 DOI: https://doi.org/10.15446/abc.v21n1.49336
Monaghan, J. R., Stier, A. C., Michonneau, F., Smith, M. D., Pasch, B., Maden, M., and Seifert, A.W. (2014). Experimentally induced metamorphosis in axolotls reduces regenerative rate and fidelity. Regeneration, 1, 2–14. https://doi.org/10.1002/reg2.8 DOI: https://doi.org/10.1002/reg2.8
Mueller, W. A., Hassel, M., and Grealy, M. (2015). Development of Important Model Species II: Vertebrates. Development and Reproduction in Humans and Animal Model Species. Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-662-43784-1
Mummery, C., Wilmut, S. I., van de Stolpe, A., Roelen, B. A. J. (2011). Chapter 2 - Embryonic Development. Stem Cells (pp. 29–43). Elsevier. https://doi.org/10.1016/B978-0-12-381535-4.10002-4 DOI: https://doi.org/10.1016/B978-0-12-381535-4.10002-4
Nacu, E., Glausch, M., Le, H. Q., Damanik, F. F. R. , Schuez, M., Knapp, D., Khattak, S., Richter, T., and Tanaka, E. M. (2013). Connective tissue cells, but not muscle cells, are involved in establishing the proximo-distal outcome of limb regeneration in the axolotl. Development, 140(3), 513–518. https://doi.org/10.1242/dev.081752 DOI: https://doi.org/10.1242/dev.081752
Nowoshilow, S., Schloissnig, S., Fei, J. -F., Dahl, A., Pang, A. W. C., Pippel, M., Winkler, S., Hastie, A. R., Young, G., Roscito, J. G., Falcon, F., Knapp, D., Powell, S., Cruz, A., Cao, H., Habermann, B., Hiller, M., Tanaka, E. M., and Myers, E. W. (2018a). The axolotl genome and the evolution of key tissue formation regulators. Nature, 554, 50-55. https://doi.org/10.1038/nature25458 DOI: https://doi.org/10.1038/nature25458
Nye, H. L. D., Cameron, J. A., Chernoff, E. A. G., and Stocum, D. L. (2003). Extending the table of stages of normal development of the axolotl: Limb development. Developmental Dynamics, 226, 555–560. https://doi.org/10.1002/dvdy.10237 DOI: https://doi.org/10.1002/dvdy.10237
O’Rourke, D. P. (2002). Reptiles and amphibians as laboratory animals. Laboratory Animals, 31, 43–47. https://doi.org/10.1038/5000167
Page, R. B., and Voss, S. R. (2009). Induction of metamorphosis in axolotls (Ambystoma mexicanum). Cold Spring Harbor Protocols, pdb.prot5268. https://doi.org/10.1101/pdb.prot5268 DOI: https://doi.org/10.1101/pdb.prot5268
Parra-Olea, G., García-París, M., and Wake, D.B. (2004). Molecular diversification of salamanders of the tropical American genus Bolitoglossa (Caudata: Plethodontidae) and its evolutionary and biogeographical implications. Biological Journal of the Linnean Society, 81(3), 325–346. https://doi.org/10.1111/j.1095-8312.2003.00303.x DOI: https://doi.org/10.1111/j.1095-8312.2003.00303.x
Phipps, L. S., Marshall, L., Dorey, K., and Amaya, E. (2020). Model systems for regeneration: Xenopus. Development, 147(6):dev180844. https://doi.org/10.1242/dev.180844 DOI: https://doi.org/10.1242/dev.180844
Ponomareva, L. V., Athippozhy, A., Thorson, J. S., and Voss, S. R. (2015). Using Ambystoma mexicanum (Mexican axolotl) embryos, chemical genetics, and microarray analysis to identify signaling pathways associated with tissue regeneration. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 178, 128–35. https://doi.org/10.1016/j.cbpc.2015.06.004 DOI: https://doi.org/10.1016/j.cbpc.2015.06.004
Banerjee, B. (2014). Models for Studies in Regenerative Medicine. Perspect. Regen. Med., In: Perspectives in Regenerative Medicine (pp. 105–114). Springer, New Delhi. https://doi.org/10.1007/978-81-322-2053-4_7 DOI: https://doi.org/10.1007/978-81-322-2053-4_7
Robles-Mendoza, C., García-Basilio C and Vanegas-Pérez R. (2009). Maintenance media for the axolotl Ambystoma mexicanum juveniles (Amphibia : Caudata). Hidrobiológica, 19, 205–210.
Roy, S., and Gatien, S. (2008). Regeneration in axolotls: a model to aim for! Experimental Gerontology, 43(11), 968–73. https://doi.org/10.1016/j.exger.2008.09.003 DOI: https://doi.org/10.1016/j.exger.2008.09.003
Sabin, K., Jiang, P., Gearhart, M., Stewart, R., and Echeverri, K. (2019). AP-1cFos/JunB/miR-200a regulate the pro-regenerative glial cell response during axolotl spinal cord regeneration. Communications Biology, 2, 91. https://doi.org/10.1038/s42003-019-0335-4 DOI: https://doi.org/10.1038/s42003-019-0335-4
Salazar, M., and Arango, N. (2014). The effect of carbamate in the development of upper limb in white mice (Mus musculus). Revista de la Asociación Colombiana de Ciencias Biológicas. 26, 9–17.
Sanor, L. D., Flowers, G. P., and Crews, C. M. (2020). Multiplex CRISPR/Cas screen in regenerating haploid limbs of chimeric axolotls. Elife, 9, 1–18. https://doi.org/10.7554/eLife.48511 DOI: https://doi.org/10.7554/eLife.48511
Schreckenberg, G. M., and Jacobson, A. G. (1975). Normal stages of development of the axolotl, Ambystoma mexicanum. Developmental Biology, 42(2), 391–400. https://doi.org/10.1016/0012-1606(75)90343-7 DOI: https://doi.org/10.1016/0012-1606(75)90343-7
Seifert, A. W., Monaghan, J. R., Smith, M. D., Pasch, B., Stier, A. C., Michonneau, F., and Maden, M. (2012). The influence of fundamental traits on mechanisms controlling appendage regeneration. Biological Reviews, 87(2), 330-345. https://doi.org/10.1111/j.1469-185X.2011.00199.x DOI: https://doi.org/10.1111/j.1469-185X.2011.00199.x
Shaffer, H. B. (1993). Phylogenetics of Model Organisms: The Laboratory Axolotl, Ambystoma mexicanum. Systematic Biology, 42(4), 508–22. https://doi.org/10.1093/sysbio/42.4.508 DOI: https://doi.org/10.1093/sysbio/42.4.508
Silva-González, N., Páez, V. P., and Bock, B. C. (2011). Morphological variation in Bolitoglossa vallecula (Amphibia: Caudata: Plethodontidae) in the Cordillera Central of Colombia. Actualidades Biológicas, 33(95), 251–60.
Simon, A., and Tanaka, E. M. (2013). Limb regeneration. WIREs Developmental Biology, 2(2), 291–300. https://doi.org/10.1002/wdev.73 DOI: https://doi.org/10.1002/wdev.73
Simon, H. -G., and Odelberg, S. (2015). Maintaining Eastern newts (Notophthalmus viridescens) for regeneration research. Methods in Molecular Biology, 1290, 17–25. https://doi.org/10.1007/978-1-4939-2495-0_2 DOI: https://doi.org/10.1007/978-1-4939-2495-0_2
Smith, J. J., Putta, S., Walker, J. A., Kump, D. K., Samuels, A. K., Monaghan, J. R., Weisrock, D. W., Staben, C., and Voss, S. R. (2005). Sal-Site: Integrating new and existing ambystomatid salamander research and informational resources. BMC Genomics, 6, 181. https://doi.org/10.1186/1471-2164-6-181 DOI: https://doi.org/10.1186/1471-2164-6-181
Smith, J. J., Timoshevskaya, N., Timoshevskiy, V. A., Keinath, M. C., Hardy, D., and Voss, S. R. (2019). A chromosome-scale assembly of the axolotl genome. Genome Research, 29, 317–24. https://doi.org/10.1101/gr.241901.118 DOI: https://doi.org/10.1101/gr.241901.118
Sobkow, L., Epperlein, H. H., Herklotz, S., Straube, W. L., and Tanaka, E. M. (2006). A germline GFP transgenic axolotl and its use to track cell fate: Dual origin of the fin mesenchyme during development and the fate of blood cells during regeneration. Developmental Biology, 290(2), 386–97. https://doi.org/10.1016/j.ydbio.2005.11.037 DOI: https://doi.org/10.1016/j.ydbio.2005.11.037
Sommer, R. J. (2009). The future of evo–devo: Model systems and evolutionary theory. Nature Reviews Genetics, 10, 416-422. https://doi.org/10.1038/nrg2567 DOI: https://doi.org/10.1038/nrg2567
Stoller, M. L., and Fekete, D. M. (2016).Tol2-mediated delivery of miRNAs to the chicken otocyst using plasmid electroporation. Methods in Molecular Biology, 1427, 7–42. https://doi.org/10.1007/978-1-4939-3615-1_2 DOI: https://doi.org/10.1007/978-1-4939-3615-1_2
Suetsugu-Maki, R., Maki, N., Nakamura, K., Sumanas, S., Zhu, J., Del Rio-Tsonis, K., and Tsonis, P. A. (2012). Lens regeneration in axolotl: new evidence of developmental plasticity. BMC Biology, 10, 103. https://doi.org/10.1186/1741-7007-10-103 DOI: https://doi.org/10.1186/1741-7007-10-103
Tanaka, E. M. (2016). The Molecular and Cellular Choreography of Appendage Regeneration. Cell, 165(7), 1598–608. https://doi.org/10.1016/j.cell.2016.05.038 DOI: https://doi.org/10.1016/j.cell.2016.05.038
Tank, P. W., Carlson, B. M., and Connelly, T. G. (1976). A staging system for forelimb regeneration in the axolotl, Ambystoma mexicanum. Journal of Morphology, 150(1), 117–28. https://doi.org/10.1002/jmor.1051500106 DOI: https://doi.org/10.1002/jmor.1051500106
Tazaki, A., Tanaka, E. M., and Fei, J. F. (2017). Salamander spinal cord regeneration: The ultimate positive control in vertebrate spinal cord regeneration. Developmental Biology, 432(1), 63–71. https://doi.org/10.1016/j.ydbio.2017.09.034 DOI: https://doi.org/10.1016/j.ydbio.2017.09.034
Thygesen, M. M., Lauridsen, H., Pedersen, M., Orlowski, D., Mikkelsen, T. W., and Rasmussen, M. M. (2019). A clinically relevant blunt spinal cord injury model in the regeneration competent axolotl (Ambystoma mexicanum) tail. Experimental and Therapeutic Medicine, 17, 2322–2328. https://doi.org/10.3892/etm.2019.7193 DOI: https://doi.org/10.3892/etm.2019.7193
Tsonis, P. A., and Del Rio-Tsonis, K. (2004). Lens and retina regeneration: transdifferentiation, 78(2), 161–172. https://doi.org/10.1016/j.exer.2003.10.022 DOI: https://doi.org/10.1016/j.exer.2003.10.022
Vieira, W. A., Wells, K. M., and McCusker, C. D. (2019). Advancements to the Axolotl Model for Regeneration and Aging. Gerontology, 66, 212–222. https://doi.org/10.1159/000504294 DOI: https://doi.org/10.1159/000504294
Voss, S. R., Kump, D. K., Walker, J. A., Shaffer, H. B., and Voss, G. J. (2012).Thyroid hormone responsive QTL and the evolution of paedomorphic salamanders. Heredity, 109, 293–298. https://doi.org/10.1038/hdy.2012.41 DOI: https://doi.org/10.1038/hdy.2012.41
Voss, S. R., Palumbo, A., Nagarajan, R., Gardiner, D. M., Muneoka, K., Stromberg, A. J., and Athippozhy, A. T. (2015). Gene expression during the first 28 days of axolotl limb regeneration I: Experimental design and global analysis of gene expression. Regeneration, 2(3), 120–136. https://doi.org/10.1002/reg2.37 DOI: https://doi.org/10.1002/reg2.37
Voss, S. R., Epperlein, H. H., and Tanaka, E. M. (2009). Ambystoma mexicanum, the axolotl: a versatile amphibian model for regeneration, development, and evolution studies. Cold Spring Harbor Protocols, 2009(8). https://doi.org/10.1101/pdb.emo128 DOI: https://doi.org/10.1101/pdb.emo128
Whited, J., Lehoczky, J. A., and Tabin, C. J.(2012). Inducible genetic system for the axolotl. Proceedings of the National Academy of Sciences, 109(34), 13662-13667. https://doi.org/10.1073/pnas.1211816109 DOI: https://doi.org/10.1073/pnas.1211816109
Wiens, J. J. .(2007). The Amphibian Tree of Life. Bulletin of the American Museum of Natural History, Number 297. In D. Frost, T. Grant, T. Faivovich, R. Bain, A. Haas, C. Haddad, R. De Sá, A. Channing, M. Wilkinson and S. Donnella. The Quarterly Review of Biology, 82(1), 55–56. https://doi.org/10.1086/513362 DOI: https://doi.org/10.1206/0003-0090(2006)297[0001:TATOL]2.0.CO;2
Wildy, E. L., and Lynn, E. (2000). Cannibalism in larvae of the long-toed salamander, Ambystoma macrodactylum [Thesis]. The Pennsylvania State University.
Yun, M. H. (2018). Cellular senescence in tissue repair: Every cloud has a silver lining. The International Journal Developmental Biology, 62, 591–604. https://doi.org/10.1387/ijdb.180081my DOI: https://doi.org/10.1387/ijdb.180081my
Yun, M. H., Davaapil, H., and Brockes, J. P. (2015). Recurrent turnover of senescent cells during regeneration of a complex structure. Elife, 4, 25942455. https://doi.org/10.7554/eLife.05505 DOI: https://doi.org/10.7554/eLife.05505
Zambrano, L., Vega, E., Herrera M., L. G., Prado, E., and Reynoso, V. H. (2007). A population matrix model and population viability analysis to predict the fate of endangered species in highly managed water systems. Animal Conservation, 10, 297–303. https://doi.org/10.1111/j.1469-1795.2007.00105.x DOI: https://doi.org/10.1111/j.1469-1795.2007.00105.x
Zaragoza, C., Gomez-Guerrero, C., Martin-Ventura, J. L., Blanco-Colio, L., Lavin, B., Mallavia, B., Tarin, C., Mas, S., Ortiz, A., Egido, J., Ortiz, A., and Egido, J. (2011). Animal models of cardiovascular diseases. Journal of Biomedicine and Biotechnology, 2011, 497841. https://doi.org/10.1155/2011/497841 DOI: https://doi.org/10.1155/2011/497841
Zon, L. (2016). Modeling human diseases: an education in interactions and interdisciplinary approaches. Disease Models & Mechanisms, 9(6), 597–600. https://doi.org/10.1242/dmm.025882 DOI: https://doi.org/10.1242/dmm.025882
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Sergio García Dávila, Valeria Aguilar-Sánchez. (2023). FACTORES AMBIENTALES QUE FAVORECEN LA REPRODUCCIÓN DEL AXOLOTE DE XOCHIMILCO BAJO CUIDADO HUMANO: UNA REVISIÓN SISTEMÁTICA. Revista Latinoamericana de Herpetología, 6(4) https://doi.org/10.22201/fc.25942158e.2023.4.755.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2021 Acta Biológica Colombiana
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. La aceptación de manuscritos por parte de la revista implicará, además de su edición electrónica de acceso abierto bajo licencia Attribution-NonCommercial-ShareAlike 4.0 (CC BY NC SA), la inclusión y difusión del texto completo a través del repositorio institucional de la Universidad Nacional de Colombia y en todas aquellas bases de datos especializadas que el editor considere adecuadas para su indización con miras a incrementar la visibilidad de la revista.
2. Acta Biológica Colombiana permite a los autores archivar, descargar y compartir, la versión final publicada, así como las versiones pre-print y post-print incluyendo un encabezado con la referencia bibliográfica del articulo publicado.
3. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
4. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos institucionales, en su página web o en redes sociales cientificas como Academia, Researchgate; Mendelay) lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).