Publicado

2023-01-05

GROWTH PARAMETERS OF BLUEBERRY (Vaccinium spp.) PLANTS INOCULATED WITH Pseudomonas fluorescens

Parámetros de crecimiento de plantas de arándano (Vaccinium spp.) inoculadas con Pseudomonas fluorescens

Parâmetros de crescimento de plantas de mirtilo (Vaccinium spp.) inoculadas com Pseudomonas fluorescens

DOI:

https://doi.org/10.15446/abc.v28n1.90545

Palabras clave:

blueberry, growth modulation, Pseudomonas fluorescens. (en)
arándano, modulación de crecimiento, Pseudomonas fluorescens. (es)
mirtilo, modulação do crescimento, Pseudomonas fluorescens (pt)

Descargas

Autores/as

The production and consumption of blueberry have increased in Mexico owing to its health benefits. Symbiotic relationships have been shown to be crucial in blueberry plants. In particular, phytohormone production by Pseudomonas fluorescens is an important mechanism of plant growth promotion. However, there are only a few reports on the effects of plant growth-promoting bacteria in blueberries. Therefore, we aimed to evaluate the effects of four strains of P. fluorescens (UM16, UM240, UM256, and UM270) and two types of slow-release fertilizer (nitrophosphate and basacote) on the development of blueberry var. Biloxi under greenhouse conditions. Blueberry seedlings obtained from in vitro culture and adapted under greenhouse conditions were inoculated with 1 x 106 CFU with any of the four strains, depending on treatment. Plants inoculated showed increased average plant length, plant fresh weight, root length, and root fresh and dry weight, compared with those with the control treatment (non-inoculated plants). The plants inoculated and fertilized with nitrophosphate had a better development compared with those fertilized with basacote or the control plants (inoculated or fertilized). Inoculated plants fertilized with nitrophosphate also had greater plant length, higher fresh plant weight, longer roots, and greater root fresh and dry weight than the control (non-inoculated or non-fertilized plants). Our study could facilitate the sustainable propagation of blueberry plants.

La producción y consumo de arándano en México se ha incrementado debido a sus beneficios en la salud. Las relaciones simbióticas han mostrado ser cruciales en arándano. En particular, la producción de fitohormonas de P. fluorescens es un mecanismo importante en la promoción del crecimiento en plantas. Sin embargo, hay pocos reportes del efecto de las bacterias promotoras del crecimiento vegetal en arándano. Por lo tanto, nos propusimos evaluar el efecto de cuatro cepas de P. fluorescens (UM16, UM240, UM256 y UM270) y dos fertilizantes de lenta liberación (nitrofosfato y basacote) en el desarrollo de plantas de arándano var Biloxi bajo condiciones de invernadero. Las plántulas de arándano obtenidas de cultivo in vitro, y adaptadas bajo condiciones de invernadero, fueron inoculadas con 1 x 106 UFC con cualquiera de las cuatro cepas, según el tratamiento. Las plantas inoculadas mostraron un mayor incremento en la longitud de la planta, peso fresco de la planta, longitud de la raíz, y peso fresco y seco de la raíz, en comparación con el testigo (plantas no inoculadas). Las plantas inoculadas y fertilizadas con nitrofosfato presentaron una mejor respuesta en su desarrollo, en comparación con las plantas fertilizadas con bascaote y las plantas testigo (inoculadas o fertilizadas). Una de las cepas tuvo un mayor efecto sobre la longitud y peso fresco de la planta, longitud de la raíz, y peso fresco y seco de la raíz en comparación con el testigo (inoculadas o fertilizadas). Nuestro estudio podría facilitar la propagación sustentable de plantas de arándano.

A produção e o consumo de mirtilos no México aumentaram devido aos seus benefícios para a saúde. As relações simbióticas têm se mostrado cruciais no mirtilo. Em particular, a produção de fitormônios de P. fluorescens é um mecanismo importante na promoção do crescimento em plantas. No entanto, existem poucos relatos sobre o efeito de bactérias promotoras de crescimento de plantas no mirtilo. Portanto, pretendemos avaliar o efeito de quatro cepas de P. fluorescens no desenvolvimento de plantas de mirtilo var Biloxi tratadas com dois tipos de fertilizantes de liberação lenta (nitrofosfato e basacote) em casa de vegetação. O delineamento experimental foi em blocos ao acaso com dois tratamentos: 1) plantas inoculadas com P. fluorescens (UM16, UM240, UM256 e UM270) e 2) plantas fertilizadas com nitrophoska e / ou basacoto e inoculadas com as cepas. As mudas de mirtilo obtidas em cultivo in vitro e adaptadas em casa de vegetação foram inoculadas com 1 x 106 UFC de cada uma das quatro linhagens. As plantas inoculadas com uma das linhagens apresentaram aumento no comprimento da planta, massa fresca da planta, comprimento da raiz e massa fresca e seca da raiz, em relação à testemunha. As plantas inoculadas e fertilizadas com nitrofosfato apresentaram aumento no comprimento da planta, massa fresca da planta, comprimento da raiz, massa fresca e seca da raiz do que as plantas controle. Nosso estudo pode facilitar a propagação sustentável de plantas de mirtilo.

Referencias

Ahmed, F., and Khan, M.S. (2011). Functional aspects of plant growth-promoting rhizobacteria: Recent advancements. Insight Microbiol, 1, 39-54. DOI: https://doi.org/10.5567/IMICRO-IK.2011.39.54

Alizadeh, O. S., Sharafzadeh, A., and Firoozabadi, H. (2012). The effect of plant growth promoting rhizobacteria in saline condition. Asian Journal of Plant Science, 11, 1-8. DOI: https://doi.org/10.3923/ajps.2012.1.8

Bonfante, P., and Anca, I.A. (2009). Distribution of Cren-and Euryarchaeota in scots pine mycorrhizospheres and boreal forest humus. Microbial Ecology, 54(3), 406-416. DOI: https://doi.org/10.1007/s00248-007-9232-3

Chaparro, J.M., Sheflin, A.M., Manter, D.K., and Vivanco, J.M. (2012). Manipulating the soil microbiome to increase soil health and plant fertility. Bioly and Fertility of Soils, 48(5), 489-499. DOI: https://doi.org/10.1007/s00374-012-0691-4

Cézard, C., Farvaque, N., and Sonnet, P. (2015). Chemistry and biology of pyoverdine, Pseudomonas primary siderophores. Current Medical Chemistry, 22:165-166. DOI: https://doi.org/10.2174/0929867321666141011194624

Egamberdieva, D. (2005). Characterization of Pseudomonas species isolated from the rhizosphere of plant grown in serozem soil, semiarid region of Uzbekistan. Science World Journal, 5:501-509. DOI: https://doi.org/10.1100/tsw.2005.64

Etchells, J.P., Smit, M.E., Gaudinier, A., Williams, C.J., and Brady, S.M. (2016). A brief history of the TDIFPXY signaling module: balancing meristem identity and differentiation during vascular development. New Phytologist, 209(2): 474-484. DOI: https://doi.org/10.1111/nph.13642

Fulcher, A., Ward, W.N., Klingeman, W.E., Hale, F., and White, A.A. (2015). Blueberry culture and pest, disease, and abiotic disorder management during nursery production in the Southeastern U.S.: A Review Journal Environmental Horticulture, 33(1), 33-44. DOI: https://doi.org/10.24266/0738-2898-33.1.33

Ghasempour, N.S., and Aminpanah, H. (2015). Effects of phosphorus fertilization and Pseudomonas fluorescens strain on the growth and yield of faba bean (Vicia faba L.). IDESIA (Chile), 33,15-21. DOI: https://doi.org/10.4067/S0718-34292015000400003

Glick, B.R. (2012). Plant growth-promoting bacterial: mechanisms and applications. Scientifica, 2012.963401. Doi: https://dx.doi.org/10.6064/2012/963401. DOI: https://doi.org/10.6064/2012/963401

Goswami, D., Thakker, J.N., and Dhandhukia, P.C. (2016). Portraying mechanics of plant growth-promoting rhizobacteria (PGPR): A review. Cogent Food and Agriculture, 2, 1. DOI: https://doi.org/10.1080/23311932.2015.1127500

Hariprasad, P., and Niranja, S. (2009). Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant and Soil, 316, 13-24. https://doi.org/10.1007/s11104-008-9754-6. DOI: https://doi.org/10.1007/s11104-008-9754-6

Hayat, R., Ali, S., Amara, U., Khalid, R., and Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: a review. Annals of Microbiology, 60(4), 579-598. DOI: https://doi.org/10.1007/s13213-010-0117-1

Hernández, L.R., Rojas, S.D., Contreras, P.M., Orozco, M.M.C., Macías, R.L.I., Reyes de la Cruz, H., et al. (2015). Characterization of the antifungal and plant growth promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biological Control, 81, 83-92. Doi: https://doi.org/10.1016/j.biocontrol.2014.11.011 DOI: https://doi.org/10.1016/j.biocontrol.2014.11.011

Jha, C.K., and Saraf M. (2015). Plant growth-promoting rhizobacteria (PGPR): A review. E3. Journal of Agricultural Research and Development, 5, 108-119.

Johri, B.N. (2001). Technology development and demonstration of a new bacterial rhizosphere competent. Environmental Microbiology, 1, 9-13.

Kimar, P., Kaushal, R.N., and Dubey, A.R.C. (2015). Isolation and identification of plant Recent Reseach in Science and Technology, promotion of Lycopersicon esculentum L. Academia Arena, 7(5), 44-51.

Kirankumar, R., Jagadeesh, K., Krishnaraj, P., and Patil, M. (2008). Enhanced growth promotion of tomato and nutrient uptake by plant growth-promoting rhizobacterial isolates in presence of tobacco mosaic virus pathogen. Karnataka Journal of Agricultural Science, 21, 309-311.

Kumar-Mishra, R., Prakash, O., Alam, M., and Dikshit, A. (2010). Influence of plant growth-promoting rhizobacteria (PGPR) on the productivity of Pelargonium graveolens L. Herit. Recent Reseach in Science and Technology, 2, 53-57.

Kumar, A., Kumar, A., Devi, S., and Sushila-Negi, S. (2012) Isolation, screening and characterization of bacteria from rhizospheric soils for different plant growth-promotion (PGP) activities: an in vitro study. Recent Reseach in Science and Technology, 4, 01-05.

Mehnaz, S., Weselowski, B., Aftab, F., Zahid, S., Lazarovits, G., and Iqbal, J. (2009). Isolation, characterization, and effect of fluorescent pseudomonads on micropropagated sugarcane. Canadian Journal of Microbiology, 55, 1007–1011. DOI: https://doi.org/10.1139/W09-050

Mezzetti, B. (2016) The sustainable improvement of European Berry production, quality and nutritional value in a changing environment: strawberries, currants, blackberries, blueberries and raspberries- the EUBerry Project. Acta Horticulturae, 1117, 309-314. DOI: https://doi.org/10.17660/ActaHortic.2016.1117.50

Muller, D.B., Vogel, C., Bai, Y., and Vorhotl, J.A. (2016). The plant microbiota: systems-level insights and perspectives. In: Annual Review of Genetics. Vol. 50. Bonini, N.M., (ed) Palo Alto, CA: Annual Review, 1, 211-231. DOI: https://doi.org/10.1146/annurev-genet-120215-034952

Oteino, N., Lally, R.D., Kiwanaka, S., Lloyd, A., Ryan, D., Germaine, K.J., and Dowling, D. N. (2015). Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology, 6, 745. Doi: https://doi.org/10.3389/fmicb.2015.007445. DOI: https://doi.org/10.3389/fmicb.2015.00745

Ortiz, G.M.A., Hernández, S.J.E., Valenzuela, A.B., de los Santos, V.S., Rocha, G.M.C., and Santoyo, G. (2018). Diversity of cultivable endophytic bacteria associated with blueberry plants (Vaccinium corymbosum L.) cv. Biloxi with plant growth-promoting traits. Chilean Journal of Agriculture and Animal Science, 34(2), 140-151. Doi: https://dx.doi.org/10.4067/S019-38902018005000403.

Patten CL, Glick BR. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology. 2002; 68: 3795-3801. DOI: https://doi.org/10.1128/AEM.68.8.3795-3801.2002

Prasad, R., Kumar, M., and Varma, A. 2015. Role of PGR in soil fertility and plant health. In: Egamberdieva, D., Shrivasta, S., Varma, A (Eds), Plant Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. Springer International Publishing. Switzerland, pp. 247-260. DOI: https://doi.org/10.1007/978-3-319-13401-7_12

Rokhzadi, A., Asgharzadeh, A., Darvish, F., Nour-Mohammadi, G., and Majidi, E. (2008). Influence of plant growth-promoting rhizobacteria on dry matter accumulation of chickpea (Cicer arietinum L) under field conditions. American-Eurasian Journal of Agricultural and Environmental Science, 3, 253-257.

Rojas, S.D., Hernández, P.E., and Santoyo, G. (2016). Evaluation of Bacillus and Pseudomonas to colonize the rhizosphere and their effect on growth promotion in tomato (Physalis ixocarpa Brot. Ex Horm.). Revista Chapingo Serie Horticultura, XXII, 1:45-57. Doi: https://doi.org/10.5154/R.RCHSH.2015.06.009 DOI: https://doi.org/10.5154/r.rchsh.2015.06.009

Saharan, B.S., and Nehra, V. (2011). Plant growthpromoting rhizobacteria: A critical review. Life Science Medical Research, 21, 1-30.

Saleem, M., Arshad, M., Hussain, S., Ahmad, B.S. (2007). Perspective of plant growth-promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology and Biotechnology, 34, 635-648. DOI: https://doi.org/10.1007/s10295-007-0240-6

Santoyo, G., Orozco-Mosqueda., M.C., and Govindappa, M. (2012). Mechanisms of biocontrol and plant growth promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Science and Technology, 22, 855–872. DOI: https://doi.org/10.1080/09583157.2012.694413

Seleim, M.A.A., Saead, F.A., Abd-El-Moneem, K,M,H., and Abo-El-Yousr, K. (2011). Biological control of bacterial wilt of tomato by plant growth-promoting rhizobacteria. Plant Pathology, 10: 146-153. DOI: https://doi.org/10.3923/ppj.2011.146.153

SIAP. Servicio de Información Agroalimentaria y Pesquera. Estadísticas de arándano en México. 2019. Blogagricultura.com/estadísticas-arandano-mexico/

Suzuki, S., He, Y., and Oyaizu, H. (2003). Indole-3-acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch. Current Microbiology, 47: 0138–0143. DOI: https://doi.org/10.1007/s00284-002-3968-2

Valenzuela-Estrada, L.R.R., Vera-Caraballo, V., Ruth, L.E., and Eissenstat, D.M. (2008) Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae). American Journal of Botany, 95(12), 1506-1514. DOI: https://doi.org/10.3732/ajb.0800092

Verman, P., Yadav, A.N., Khannam, K.S., Panjiar, N., Kumar, S., and Suman, A. (2015a). Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Annals of Microbiol, https://doi.org/10.1007/s13213-014-1027-4 DOI: https://doi.org/10.1007/s13213-014-1027-4

Wahyudi, A.T., Astuti, R.P., Widyawati, A., Meryandini, A., and Nawangsih, A.A. (2011). Characterization of Bacillus sp. strains isolated from rhizosphere soybean plants for their use as potential plant growth for promoting rhizobacteria. Journal of Microbiology Antimicrobial, 3, 34-40.

Cómo citar

APA

Cortes-Solis, Y., Tovar-Rocha, V., Tovar-Rocha, J. C., Santoyo, G. y Rocha-Granados, M. C. (2023). GROWTH PARAMETERS OF BLUEBERRY (Vaccinium spp.) PLANTS INOCULATED WITH Pseudomonas fluorescens . Acta Biológica Colombiana, 28(1), 165–172. https://doi.org/10.15446/abc.v28n1.90545

ACM

[1]
Cortes-Solis, Y., Tovar-Rocha, V., Tovar-Rocha, J.C., Santoyo, G. y Rocha-Granados, M.C. 2023. GROWTH PARAMETERS OF BLUEBERRY (Vaccinium spp.) PLANTS INOCULATED WITH Pseudomonas fluorescens . Acta Biológica Colombiana. 28, 1 (ene. 2023), 165–172. DOI:https://doi.org/10.15446/abc.v28n1.90545.

ACS

(1)
Cortes-Solis, Y.; Tovar-Rocha, V.; Tovar-Rocha, J. C.; Santoyo, G.; Rocha-Granados, M. C. GROWTH PARAMETERS OF BLUEBERRY (Vaccinium spp.) PLANTS INOCULATED WITH Pseudomonas fluorescens . Acta biol. Colomb. 2023, 28, 165-172.

ABNT

CORTES-SOLIS, Y.; TOVAR-ROCHA, V.; TOVAR-ROCHA, J. C.; SANTOYO, G.; ROCHA-GRANADOS, M. C. GROWTH PARAMETERS OF BLUEBERRY (Vaccinium spp.) PLANTS INOCULATED WITH Pseudomonas fluorescens . Acta Biológica Colombiana, [S. l.], v. 28, n. 1, p. 165–172, 2023. DOI: 10.15446/abc.v28n1.90545. Disponível em: https://revistas.unal.edu.co/index.php/actabiol/article/view/90545. Acesso em: 17 jul. 2024.

Chicago

Cortes-Solis, Yesenia, Violeta Tovar-Rocha, Julio César Tovar-Rocha, Gustavo Santoyo, y María Carmen Rocha-Granados. 2023. «GROWTH PARAMETERS OF BLUEBERRY (Vaccinium spp.) PLANTS INOCULATED WITH Pseudomonas fluorescens ». Acta Biológica Colombiana 28 (1):165-72. https://doi.org/10.15446/abc.v28n1.90545.

Harvard

Cortes-Solis, Y., Tovar-Rocha, V., Tovar-Rocha, J. C., Santoyo, G. y Rocha-Granados, M. C. (2023) «GROWTH PARAMETERS OF BLUEBERRY (Vaccinium spp.) PLANTS INOCULATED WITH Pseudomonas fluorescens », Acta Biológica Colombiana, 28(1), pp. 165–172. doi: 10.15446/abc.v28n1.90545.

IEEE

[1]
Y. Cortes-Solis, V. Tovar-Rocha, J. C. Tovar-Rocha, G. Santoyo, y M. C. Rocha-Granados, «GROWTH PARAMETERS OF BLUEBERRY (Vaccinium spp.) PLANTS INOCULATED WITH Pseudomonas fluorescens », Acta biol. Colomb., vol. 28, n.º 1, pp. 165–172, ene. 2023.

MLA

Cortes-Solis, Y., V. Tovar-Rocha, J. C. Tovar-Rocha, G. Santoyo, y M. C. Rocha-Granados. «GROWTH PARAMETERS OF BLUEBERRY (Vaccinium spp.) PLANTS INOCULATED WITH Pseudomonas fluorescens ». Acta Biológica Colombiana, vol. 28, n.º 1, enero de 2023, pp. 165-72, doi:10.15446/abc.v28n1.90545.

Turabian

Cortes-Solis, Yesenia, Violeta Tovar-Rocha, Julio César Tovar-Rocha, Gustavo Santoyo, y María Carmen Rocha-Granados. «GROWTH PARAMETERS OF BLUEBERRY (Vaccinium spp.) PLANTS INOCULATED WITH Pseudomonas fluorescens ». Acta Biológica Colombiana 28, no. 1 (enero 5, 2023): 165–172. Accedido julio 17, 2024. https://revistas.unal.edu.co/index.php/actabiol/article/view/90545.

Vancouver

1.
Cortes-Solis Y, Tovar-Rocha V, Tovar-Rocha JC, Santoyo G, Rocha-Granados MC. GROWTH PARAMETERS OF BLUEBERRY (Vaccinium spp.) PLANTS INOCULATED WITH Pseudomonas fluorescens . Acta biol. Colomb. [Internet]. 5 de enero de 2023 [citado 17 de julio de 2024];28(1):165-72. Disponible en: https://revistas.unal.edu.co/index.php/actabiol/article/view/90545

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

210

Descargas

Los datos de descargas todavía no están disponibles.