
Publicado
DIFFERENCES IN THE ACUTE AMMONIA TOXICITY BETWEEN SEXES OF GUPPY Poecilia reticulata (POECILIIDAE)
Diferencias en la toxicidad aguda del amoníaco entre sexos de Guppy Poecilia reticulata (Poeciliidae)
DOI:
https://doi.org/10.15446/abc.v28n1.91052Palabras clave:
lethal concentration, nitrogen compound, ornamental fish, sexual dimorphism, toxicology (en)compuesto de nitrógeno, concentración letal, dimorfismo sexual, peces ornamentales, toxicología (es)
Descargas
This study evaluated the sensitivity of male and female of guppies (Poecilia reticulata) to ammonia. LC50-96h for males, females and combined sexes of P. reticulata was 37.33, 48.34, and 42.45 mg/L of total ammonia or 1.03, 1.34, and 1.17 mg/L of un-ionized ammonia. The mortality at the concentration of 40 mg/L of total ammonia differed between the sexes with higher mortality in males. These results have implications for production systems, since recommendations of ammonia toxicity reference values that do not consider the difference between the sexes, can lead to the mortality of males, and cause economic losses because males have higher commercial value in the ornamental market.
Este estudio evaluó la sensibilidad de machos y hembras de guppies (Poecilia reticulata) al amoníaco. La CL50-96h para machos, hembras y sexos combinados de P. reticulata fue de 37,33; 48,34 y 42,45 mg/L de amoníaco total o 1,03; 1,34 y 1,17 mg/L de amoníaco no ionizado. La mortalidad a la concentración de 40 mg/L de amoníaco total difirió entre los sexos con mayor mortalidad de los machos. Estos resultados tienen implicaciones para los sistemas de producción, una vez que las recomendaciones de valores de referencia de toxicidad del amoníaco que no consideren la diferencia entre sexos, pueden conducir a la mortalidad de los machos y provocar pérdidas económicas, debido a que los machos tienen mayor valor comercial en el mercado ornamental.
Referencias
Allen, T., Singhal, R., & Rana, S. V. S. (2004). Resistance to oxidative stress in a freshwater fish Channa punctatus after exposure to inorganic arsenic. Biological Trace Element Research, 98(1), 63-72. https://doi.org/10.1385/BTER:98:1:63 DOI: https://doi.org/10.1385/BTER:98:1:63
Antunes, A. M. (2013) Avaliação da exposição aguda e sub-letal ao glifosato (N-fosfometilglicina) e ao AMPA (ácido aminometil-fosfônico) em brânquias e fígado de Poecilia reticulata com o emprego de biomarcadores moleculares e morfológicos. Universidade Federal de Goiás
APHA-American Public Health Association. (2005). Standard methods for the examination of water and wasterwater. Sprimgfield: Byrd Prepress.
Armstrong, B. M., Lazorchak, J. M., Murphy, C. A., Haring, H. J., Jensen, K. M., & Smith, M. E. (2012). Determining the effects of ammonia on fathead minnow (Pimephales promelas) reproduction. Science of the total environment, 420, 127-133. https://doi.org/10.1016/j.scitotenv.2012.01.005 DOI: https://doi.org/10.1016/j.scitotenv.2012.01.005
Ballesteros, M. L., Bianchi, G. E., Carranza, M., & Bistoni, M. A. (2007). Endosulfan acute toxicity and histomorphological alterations in Jenynsia multidentata (Anablepidae, Cyprinodontiformes). Journal of Environmental Science and Health Part B, 42(4), 351-357. https://doi.org/10.1080/03601230701309577 DOI: https://doi.org/10.1080/03601230701309577
Barbieri, E., & Doi, S. A. (2012). Acute toxicity of ammonia on juvenile cobia (Rachycentron canadum, Linnaeus, 1766) according to thBenli, A. Ç. K., Köksal, G., & Özkul, A. (2008). Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): Effects on gill, liver and kidney histology. Chemosphere, 72(9), 1355-1358. https://doi.org/10.1016/j.chemosphere.2008.04.037 DOI: https://doi.org/10.1016/j.chemosphere.2008.04.037
Boyd, C. E., & Tucker, C. S. (1998) Pond aquaculture water quality management. Kluwer. DOI: https://doi.org/10.1007/978-1-4615-5407-3
Boyd, C. E., & Tucker, C. S. (2012). Pond aquaculture water quality management. Springer Science & Business Media.
CONAMA-Conselho Nacional do Meio Ambiente. (2005) Resolução CONAMA nº 357, de 17 de março de 2005. Diário Oficial da União, Brasília.
Camargo, J. A., & Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment international, 32(6), 831-849. https://doi.org/10.1016/j.envint.2006.05.002 DOI: https://doi.org/10.1016/j.envint.2006.05.002
Campos, B. R. D., Miranda Filho, K. C., D’Incao, F., Poersch, L. H. D. S., & Wasielesky, W. (2012). Toxicidade aguda da amônia, nitrito e nitrato sobre juvenis de camarão-rosa Farfantepenaeus brasiliensis (Latreille, 1817)(Crustacea: Decapoda). https://doi.org/10.5088/atl.2012.34.1.75 DOI: https://doi.org/10.5088/atl.2012.34.1.75
Cheng, C. H., Yang, F. F., Ling, R. Z., Liao, S. A., Miao, Y. T., Ye, C. X., & Wang, A. L. (2015). Effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus). Aquatic Toxicology, 164, 61-71. https://doi.org/10.1016/j.aquatox.2015.04.004 DOI: https://doi.org/10.1016/j.aquatox.2015.04.004
Colgan, P. W., Cross, J. A., & Johansen, P. H. (1982). Guppy behavior during exposure to a sub-lethal concentration of phenol. Bulletin of environmental contamination and toxicology, 28(1), 20-27. https://doi.org/10.1007/BF01608407 DOI: https://doi.org/10.1007/BF01608407
Damato, M., & Barbieri, E. (2011). Determinação da toxicidade aguda de cloreto de amônia para uma espécie de peixe (Hyphessobrycon callistus) indicadora regional. O Mundo da Saúde, 35(4), 401-407. https://doi.org/10.15343/0104-7809.2011354401407 DOI: https://doi.org/10.15343/0104-7809.2011354401407
Di Marzio, W. D., Alberdi, J. L., Sáenz, M. E., & Del Carmen Tortorelli, M. (1998). Effects of paraquat (Osaquat® formulation) on survival and total cholinesterase activity in male and female adults of Cnesterodon decemmaculatus (Pisces, Poeciliidae). Environmental Toxicology and Water Quality: An International Journal, 13(1), 55-59. https://doi.org/10.1002/(SICI)1098-2256(1998)13:1<55::AIDTOX3>3.0.CO;2-6 DOI: https://doi.org/10.1002/(SICI)1098-2256(1998)13:1<55::AID-TOX3>3.0.CO;2-6
Dolan, M. C., Dietrich, G., Panella, N. A., Montenieri, J. A., & Karchesy, J. J. (2007). Biocidal activity of three wood essential oils against Ixodes scapularis (Acari: Ixodidae), Xenopsylla cheopis (Siphonaptera: Pulicidae), and Aedes aegypti (Diptera: Culicidae). Journal of economic entomology, 100(2), 622-625. https://doi.org/10.1093/jee/100.2.622 DOI: https://doi.org/10.1093/jee/100.2.622
ˇDoleželová, P., Mácová, S., Pišteˇková, V., Svobodová, Z., Bedánˇová, I., & Voslárˇová, E. (2011). Nitrite toxicity assessment in Danio rerio and Poecilia reticulata. Acta Veterinaria Brno, 80(3), 309-312. https://doi.org/10.2754/avb201180030309 DOI: https://doi.org/10.2754/avb201180030309
Dunnette, D. A. (1992). Assessing global river water quality: overview and data collection. In Dunnette, D. A., & O’Brien, R. J., editor(s). The Science of Global Change: The Impact of Human Activities on the Environment. American Chemical Society. DOI: https://doi.org/10.1021/bk-1992-0483.ch012
Eiras, B. J., Veras, G. C., Alves, A. X., & Da Costa, R. M. (2019). Effect of artificial seawater and feeding frequency on the larval culture of freshwater Amazonian ornamental fish banded cichlid Heros severus (Heckel, 1840) and angelfish Pterophyllum scalare (Schultze, 1823). Spanish Journal of Agricultural Research, 17(2), e0604-e0604. https://doi.org/10.5424/sjar/2019172-14645 DOI: https://doi.org/10.5424/sjar/2019172-14645
Emerson, K., Russo, R. C., Lund, R. E., & Thurston, R. V. (1975). Aqueous ammonia equilibrium calculations: effect of pH and temperature. Journal of the Fisheries Board of Canada, 32(12), 2379-2383. https://doi.org/10.1139/f75-274 DOI: https://doi.org/10.1139/f75-274
EPA-Environmental Protection Agency (2002). Methods for Measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms (15th ed.). Washington: Environmental Protection Agency Office of Water.
Florindo, M. C., Jerônimo, G. T., Steckert, L. D., Acchile, M., Gonçalves, E. L. T., Cardoso, L., & Martins, M. L. (2017). Protozoan parasites of freshwater ornamental fish. Latin american journal of aquatic research, 45(5), 948-956. https://doi.org/10.3856/vol45-issue5-fulltext-10 DOI: https://doi.org/10.3856/vol45-issue5-fulltext-10
Froese, R., & Pauly, D. (2019). FishBase (version 04/2019). Available in https://www.fishbase.org.
Geyer, H. J., Scheunert, I., Bruggemann, R., Matthies, M., Steinberg, C. E., Zitko, V., ... & Garrison, W. (1994). The relevance of aquatic organisms’ lipid content to the toxicity of lipophilic chemicals: Toxicity of lindane to different fish species. Ecotoxicology and environmental safety, 28(1), 53-70. https://doi.org/10.1006/eesa.1994.1034 DOI: https://doi.org/10.1006/eesa.1994.1034
Hamilton, M. A., Russo, R. C., & Thurston, R. V. (1977). Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environmental science & technology, 11(7), 714-719. https://doi.org/10.1021/es60130a004 DOI: https://doi.org/10.1021/es60130a004
Heulett, S. T., Weeks, S. C., & Meffe, G. K. (1995). Lipid dynamics and growth relative to resource level in juvenile eastern mosquitofish (Gambusia holbrooki: Poeciliidae). Copeia, 97-104. https://doi.org/10.2307/1446803 DOI: https://doi.org/10.2307/1446803
Ip, Y. K., & Chew, S. F. (2010). Ammonia production, excretion, toxicity, and defense in fish: a review. Frontiers in physiology, 1, 134. https://doi.org/10.3389/fphys.2010.00134 DOI: https://doi.org/10.3389/fphys.2010.00134
ITC-International Trade Centre. (2020). Trade Map – International Trade Statistics: Trade statistics for international business development. Available in https://www.trademap.org/tradestat/Country_SelProduct_TS.aspx?nvpm=1%7c%7c%7c%7c%7cTOTAL%7c%7c%7c2%7c1%7c1%7c2%7c2%7c1%7c2%7c1%7c1
Latap, N., Anyanwu, C.F., & Ildefonso, R.L. (2015). Assessment of agrochemical residue in fish pond in agricultural areas of Ifugao Province. International Journal of Current Advanced Research, 3, 1476-1481.
Martins, M. L., Onaka, E. M., Moraes, F. D., Bozzo, F. R., Paiva, A. M. F. C., & Gonçalves, A. (2002). Recent studies on parasitic infections of freshwater cultivated fish in the state of São Paulo, Brazil. Acta Scientiarum, 24(4), 981-985. DOI: https://doi.org/10.4025/actascianimsci.v24i0.2460
Mayer, F. L., & Ellersieck, M. R. (1986). Manual of acute toxicity: interpretation and data base for 410 chemicals and 66 species of freshwater animals (No. 160). US Department of the Interior, Fish and Wildlife Service.
Meffe, G. K., & Snelson Jr, F. F. (1993). Annual lipid cycle in eastern mosquitofish (Gambusia holbrooki: Poeciliidae) from South Carolina. Copeia, 596-604. https://doi.org/10.2307/1447220 DOI: https://doi.org/10.2307/1447220
Mukherjee, A., Mandal, B., & Banerjee, S. (2009). Turmeric as a carotenoid source on pigmentation and growth of fantail guppy, Poecilia reticulata. In Proceedings of the zoological Society (Vol. 62, No. 2, pp. 119-123). Springer-Verlag. https://doi.org/10.1007/s12595-009-0013-5 DOI: https://doi.org/10.1007/s12595-009-0013-5
Mukherjee, P., Nandi, C., Khatoon, N., Pal, R., & Pal, R. (2015). Mixed algal diet for skin colour enhancement of ornamental fishes. J Algal Biomass Util, 6(4), 35-46.
Nandi, A., Rout, S. K., Dasgupta, A., & Abraham, T. J. (2009). Water quality characteristics in controlled production of ornamental fishes as influenced by feeding a probiotic bacterium, Lactobacillus sp bioencapsulated in Artemia sp. Indian J Fish, 56(4), 283-286.
Nwani, C. D., Lakra, W. S., Nagpure, N. S., Kumar, R., Kushwaha, B., & Srivastava, S. K. (2010). Mutagenic and genotoxic effects of carbosulfan in freshwater fish Channa punctatus (Bloch) using micronucleus assay and alkaline single-cell gel electrophoresis. Food and Chemical Toxicology, 48(1), 202-208. https://doi.org/10.1016/j.fct.2009.09.041 DOI: https://doi.org/10.1016/j.fct.2009.09.041
Pandey, S., Kumar, R., Sharma, S., Nagpure, N. S., Srivastava, S. K., & Verma, M. S. (2005). Acute toxicity bioassays of mercuric chloride and malathion on air-breathing fish Channa punctatus (Bloch). Ecotoxicology and environmental safety, 61(1), 114-120. https://doi.org/10.1016/j.ecoenv.2004.08.004 DOI: https://doi.org/10.1016/j.ecoenv.2004.08.004
Piedras, S. R. N., Pouey, J. L. O. F., Moraes, P. R. R., & Cardoso, D. F. (2006). Lethal concentration (CL50) of un-ionized ammonia for pejerrey larvae in acute exposure. Scientia Agricola, 63, 184-186. https://doi.org/10.1590/S0103-90162006000200011 DOI: https://doi.org/10.1590/S0103-90162006000200011
R Core Team. (2019). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available in https://www.R-project.org/
Randall, D. J., & Tsui, T. K. N. (2002). Ammonia toxicity in fish. Marine pollution bulletin, 45(1-12), 17-23. https://doi.org/10.1016/S0025-326X(02)00227-8 DOI: https://doi.org/10.1016/S0025-326X(02)00227-8
Ribeiro, F. A. S., & Fernandes, J. B. K. (2008). Sistemas de criação de peixes ornamentais. Panoranma da Aquicultura, 18, 34.
Riehl, R. (1991). Aquarien atlas (Vol. 4). Mergus.
Rodrigues, R. V., Romano, L. A., Schwarz, M. H., Delbos, B., & Sampaio, L. A. (2014). Acute tolerance and histopathological effects of ammonia on juvenile maroon clownfish Premnas biaculeatus (Block 1790). Aquaculture Research, 45(7), 1133-1139. https://doi.org/10.1111/are.12054 DOI: https://doi.org/10.1111/are.12054
Rubin, A. J., & Elmaraghy, M. A. (1977). Studies on the toxicity of ammonia, nitrate and their mixtures to the common guppy. Water Resources, 11(10), 927-935. https://doi.org/10.1016/0043-1354(77)90079-3 DOI: https://doi.org/10.1016/0043-1354(77)90079-3
Sommerville, C., Endris, R., Bell, T. A., Ogawa, K., Buchmann, K., & Sweeney, D. (2016). World association for the advancement of veterinary parasitology (WAAVP) guideline for testing the efficacy of ectoparasiticides for fish. Veterinary parasitology, 219, 84-99. http://dx.doi.org/10.1016/j.vetpar.2015.11.003. DOI: https://doi.org/10.1016/j.vetpar.2015.11.003
Sprague, J. B. (1971). Measurement of pollutant toxicity to fish—III: Sublethal effects and “safe” concentrations. Water research, 5(6), 245-266. https://doi.org/10.1016/0043-1354(71)90171-0 DOI: https://doi.org/10.1016/0043-1354(71)90171-0
Sung, Y. Y., Roberts, R. J., & Bossier, P. (2012). Enhancement of Hsp70 synthesis protects common carp, Cyprinus carpio L., against lethal ammonia toxicity. Journal of fish diseases, 35(8), 563-568. https://doi.org/10.1111/j.1365-2761.2012.01397.x DOI: https://doi.org/10.1111/j.1365-2761.2012.01397.x
Tomasso, J. R. (1994). Toxicity of nitrogenous wastes to aquaculture animals. Reviews in Fisheries Science, 2(4), 291-314. https://doi.org/10.1080/10641269409388560 DOI: https://doi.org/10.1080/10641269409388560
Varó, I., Amat, F., & Navarro, J. C. (2008). Acute toxicity of dichlorvos to Aphanius iberus (Cuvier & Valenciennes, 1846) and its anti-cholinesterase effects on this species. Aquatic toxicology, 88(1), 53-61. https://doi.org/10.1016/j.aquatox.2008.03.004 DOI: https://doi.org/10.1016/j.aquatox.2008.03.004
Vidal-Jr, M. V. V. (2006). Sistemas de produção de peixes ornamentais. Cadernos Técnicos de Veterinária e Zootecnia, 51, 62-74.
Weber, J. M., & Kramer, D. L. (1983). Effects of hypoxia and surface access on growth, mortality, and behavior of juvenile guppies, Poecilia reticulata. Canadian Journal of Fisheries and Aquatic Sciences, 40(10), 1583-1588. https://doi.org/10.1139/f83-183 DOI: https://doi.org/10.1139/f83-183
Yang, L., Yang, Q., Jiang, S., Li, Y., Zhou, F., Li, T., & Huang, J. (2015). Metabolic, immune responses in prawn (Penaeus monodon) exposed to ambient ammonia. Aquaculture international, 23(4), 1049-1062. https://doi.org/10.1007/s10499-014-9863-6 DOI: https://doi.org/10.1007/s10499-014-9863-6
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. La aceptación de manuscritos por parte de la revista implicará, además de su edición electrónica de acceso abierto bajo licencia Attribution-NonCommercial-ShareAlike 4.0 (CC BY NC SA), la inclusión y difusión del texto completo a través del repositorio institucional de la Universidad Nacional de Colombia y en todas aquellas bases de datos especializadas que el editor considere adecuadas para su indización con miras a incrementar la visibilidad de la revista.
2. Acta Biológica Colombiana permite a los autores archivar, descargar y compartir, la versión final publicada, así como las versiones pre-print y post-print incluyendo un encabezado con la referencia bibliográfica del articulo publicado.
3. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
4. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos institucionales, en su página web o en redes sociales cientificas como Academia, Researchgate; Mendelay) lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).