
Publicado
CHANGES IN VEGETATION AT SMALL LANDSCAPE SCALES AND CAPTIVITY ALTER THE GUT MICROBIOTA OF BLACK HOWLER MONKEYS (Alouatta pigra: Atelidae)
Cambios en la vegetación a pequeñas escalas de paisaje y el cautiverio alteran la microbiota intestinal de los monos aulladores negros (Alouatta pigra: Atelidae)
DOI:
https://doi.org/10.15446/abc.v28n1.93450Palabras clave:
Dysbiosis, habitat degradation, microbial ecology, wildlife, zoo animals (en)disbiosis, degradación del hábitat, ecología microbiana, fauna silvestre, animales de zoológico (es)
Descargas
The healthy function of the gastrointestinal system is influenced by changes in the microbiota and the adaptability of the host to different habitat conditions and food availability. We isolated and identified 64 bacterial morphospecies from rectal swabs from five captive black howler monkeys (CM) and 15 wild individuals (WM) from groups living in fragments with different compositions and vegetation structures (height, density, canopy width) in flooded and non-flooded areas. Low microbial diversity in CM and WM from the flooded area was observed while in WM from the non-flooded area, there was a higher microbial diversity and evenness. Free-ranging monkeys from different areas showed a significant difference in the replacement of morphospecies of gut microbiota (p = 0.0006); however, the bacterial communities are not differentiated as particular entities. The intestinal microbial community can be an indicator of howler monkeys’ health and habitat quality. The change in the composition of the plant community into small landscape scales, as well as fragmentation and natural heterogeneity of the landscape, can affect the intestinal microbial community of howler monkeys.
La función saludable del sistema gastrointestinal está influenciada por cambios en la microbiota y la adaptabilidad del huésped a diferentes condiciones de hábitat y disponibilidad de alimentos. Aislamos e identificamos 64 morfoespecies bacterianas de hisopos rectales de cinco monos aulladores negros cautivos (CM) y 15 individuos silvestres (WM) de grupos que viven en fragmentos con diferente composición y estructura de vegetación (altura, densidad, ancho del dosel) en zonas inundadas y no inundadas. Observamos una baja diversidad microbiana en CM y WM del área inundada, mientras que los WM del área no inundada tuvieron mayor diversidad y equitatividad. Los monos silvestres de las diferentes áreas mostraron una diferencia significativa en el reemplazo de morfoespecies de la microbiota intestinal (p = 0,0006); sin embargo, las comunidades bacterianas no se diferencian como entidades particulares. La comunidad microbiana intestinal puede ser un indicador de la salud y la calidad del hábitat de los monos aulladores. El cambio en la composición de la comunidad vegetal a pequeñas escalas de paisaje, así como la fragmentación y heterogeneidad natural del paisaje, pueden afectar la comunidad microbiana intestinal de los monos aulladores.
Referencias
Alcock, J., Maley, C.C. y Aktipis, A. (2014). Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. Bioessays, 36, 940-949. https://doi.org/10.1002/bies.201400071 DOI: https://doi.org/10.1002/bies.201400071
Álvarez-Posadilla, M., Linares-Torres, P., Bailador-Andrés, C., Suárez-Álvarez, P. y Olcoz-Goñi, J.L. (2006). Bacteriemia por Staphylococcus cohnii asociado a colecistitis aguda. An Med Interna, 23, 51-52. DOI: https://doi.org/10.4321/S0212-71992006000100016
Amato, K.R., Yeoman, C.J., Kent, A., Righini, N., Carbonero, F., Estrada, A., Gaskins, H.R., Stumpf, R.M., Yildirim, S., Torralba, M., Gillis, M., Wilson, B.A., Nelson, K.E., White, B.A, y Leigh, S.R. (2013). Habitat degradation impacts black howler monkeys (Alouatta pigra) gastrointestinal microbiomes. ISME J, 7, 1344-1353. https://doi.org/10.1038/ismej.2013.16 DOI: https://doi.org/10.1038/ismej.2013.16
Amato, K.R., Leigh, S.R, Kent, A., Mackie, R.I, Yeoman, C.J., Stumpf, R.M., Wilson, B.A., Nelson, K.E., White, B.A. y Garber, P.A. (2015). The gut microbiota appears to compensate for seasonal diet variation in the wild Black howler monkey (Alouatta pigra). Microb Ecol., 69, 434-443. https://doi.org/10.1007/s00248-014-0554-7 DOI: https://doi.org/10.1007/s00248-014-0554-7
Ancrenaz, M., Setchell, J.M. y Curtis, D.J. (2003). Handling, anaesthesia, health evaluation, and biological sampling en J.M. Setchell, D.J, Curtis (Eds.), Field and laboratory methods in primatology: a practical guide (pp. 122-138). Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781139165105.010
Apajalahti, J. (2005). Comparative gut microflora, metabolic challenges, and potential opportunities. J Appl Poultry Res, 14, 444-453. https://doi.org/10.1093/japr/14.2.444 DOI: https://doi.org/10.1093/japr/14.2.444
Aristizabal, J.F. (2013). Estrategias de forrajeo y características nutricionales de la dieta del mono aullador negro (Alouatta pigra) en un ambiente fragmentado [Tesis de maestría]. Instituto de Ecología.
Aristizabal, J.F., Rothman, J.M., García-Feria, L.M. y Serio-Silva, J.C. (2017). Contrasting time-based and weightbased estimates of protein and energy intake of black howler monkeys (Alouatta pigra). Am J Primatol, 79, e22611. https://doi.org/10.1002/ajp.22611 DOI: https://doi.org/10.1002/ajp.22611
Baiano, J.C.F. y Barnes, A.C. Towards control of Streptococcus iniae. Emerg Infect Dis. 2009;15:1891-1896. https://dx.doi.org/10.3201/eid1512.090232 DOI: https://doi.org/10.3201/eid1512.090232
Bolotin, A., Wincker, P., Mauger, S., Jaillon, O., Malarme, K., Weissenbach, J., Ehrlich, S.D. y Sorokin, A. (2001). The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res., 11, 731-753. https://doi.org/10.1101/gr.gr-1697r DOI: https://doi.org/10.1101/gr.GR-1697R
Budding, A.E., Grasman, M.E, Eck, A., Bogaards, J.A., Vandenbrouckle-Grauls, C.M.J.E, van Bodegraven, A.A. y Savelkoul, P.H.M. (2014). Rectal swabs for analysis of the intestinal microbiota. PLoS ONE, 9, e101344. https://doi.org/10.1371/journal.pone.0101344 DOI: https://doi.org/10.1371/journal.pone.0101344
Buxton, R. (2005). Blood agar plates and hemolysis protocols. American Society for Microbiology. http://www.asmscience.org/docserver/fulltext/education/protocol/protocol.2885.pdf
Chaves, O. y Bicca-Marques, J.C. (2013). Dietary flexibility of the brown howler monkey throughout its geographic distribution. Am J Primatol, 75, 16-29. https://doi.org/10.1002/ajp.22075 DOI: https://doi.org/10.1002/ajp.22075
Dawson, J.M., Buttery, P.J., Jenkins, D., Wood, C.D. y Gill, M. (1999). Effects of dietary quebracho tannin on nutrient utilization and tissue metabolism in sheep and rats. J Sci Food Agr., 79, 1423–1430. https://doi.org/10.1002/(SICI)1097-0010(199908)79:11<1423::AIDJSFA383>3.0.CO;2-8 DOI: https://doi.org/10.1002/(SICI)1097-0010(199908)79:11<1423::AID-JSFA383>3.0.CO;2-8
Durbán, A., Abellán, J.J., Jiménez-Hernández, N., Ponce, M., Ponce, J., Sala, T., D’Auria, G., Latorre, A. y Moya, A. (2011). Assessing gut microbial diversity from feces and rectal mucosa. Microb Ecol, 61, 123-133. https://doi.org/10.1007/s00248-010-9738-y DOI: https://doi.org/10.1007/s00248-010-9738-y
Frank, D.N. y Pace, N.R. (2008). Gastrointestinal microbiology enters the metagenomics era. Curr Opin Gastroenterol, 24, 4-10. https://doi.org/10.1097/MOG.0b013e3282f2b0e8 DOI: https://doi.org/10.1097/MOG.0b013e3282f2b0e8
Frey, J.C., Rothman, J.M., Pell, A.N., Nizeyi, J.B., Cranfield, M.R y Angert, E.R. (2006). Fecal bacterial diversity in a wild Gorilla. App Environ Microbiol, 72, 3788-3792. https://doi.org/10.1128/AEM.72.5.3788-3792.2006 DOI: https://doi.org/10.1128/AEM.72.5.3788-3792.2006
Goldberg, T.L., Gilespie, T.R., Ruego, I.B., Wheeler, E., Estoff, E.L. y Chapman, C.A. (2007). Patterns of gastrointestinal bacterial exchange between chimpanzees and human involved in research and tourism in western Uganda. Biol Cons, 1, 211-517. https://doi.org/10.1016/j.biocon.2006.10.048 DOI: https://doi.org/10.1016/j.biocon.2006.10.048
Gómez A, Petrzelkova KJ, Burns MB, Yeoman CY, Amato KR, Vickova K, Modry D, Todd A, Robinson CAJ, Remis MJ, Torralba MG, Morton E, Umaña JD, Carbonero F, Gaskins HR, Nelson KE, Wilson BA, Stumpf RM, White BA, Leigh SR, Blekham R. Gut microbiome of coexisting BaAka pygmies and Bantu reflects gradients of traditional subsistence patterns. Cell Rep. 2016;14:2142-2153. https://doi.org/10.1016/j.celrep.2016.02.013 DOI: https://doi.org/10.1016/j.celrep.2016.02.013
Grimont F, Grimont P. The Genus Serratia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E, editor(s). The Prokaryotes. New York: Springer; 2006; p. 219-244. DOI: https://doi.org/10.1007/0-387-30746-X_11
Hall LW, Clarke LW, Trim CM. Veterinary anaesthesia. 10 ed. London: WB Saunders, Harcourt Publishers. 2001. p. 475-477.
Hammer Ø, Harper DAT, Ryan PD. PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electronica 2001;4:9.
Hayashi H, Sakamoto M, Benno Y. Fecal microbial diversity in a strict vegetarian as determined by molecular analysis and cultivation. Microbiol Immun. 2002;46:819-831. https://doi.org/10.1111/j.1348-0421.2002.tb02769.x DOI: https://doi.org/10.1111/j.1348-0421.2002.tb02769.x
Holt JG, Bergey DH. Bergey’s Manual of determinative bacteriology. Baltimore (MD): Lippincott Williams and Wilkins; 1994. 787 p.
Igbinosa EO, Okoh AI. Emerging Vibrio species: an unending threat to public health in developing countries. Res Microbiol. 2008;159:495-506. https://doi.org/10.1016/j.resmic.2008.07.001 DOI: https://doi.org/10.1016/j.resmic.2008.07.001
INEGI. Anuario Estadístico de Tabasco. Gobierno del Estado de Tabasco e Instituto Nacional de Estadística y Geografía, México. 2008. Available in: http://internet.contenidos.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/anuario_14/702825066420.pdf. Cited 20 Sept 2020.
Ley RE, Luzopone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds: evolution of the vertebrate gut microbiota. Nature Rev Microbiol. 2008;6:776-788. https://doi.org/10.1038/nrmicro1978 DOI: https://doi.org/10.1038/nrmicro1978
Lozupone CA, Lladser ME, Knights D, Stombaugh J, Knitht R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 2011;5:169-172. https://doi.org/10.1038/ismej.2010.133 DOI: https://doi.org/10.1038/ismej.2010.133
Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 2012;489:220-230. https://doi.org/10.1038/nature11550 DOI: https://doi.org/10.1038/nature11550
Magurran AE. Measuring biological diversity. 2nd ed. Oxford: Blackwell Science Ltd.; 2004. 256 p.
Mariat D, Firmesse O, Levenez F, Guimaraˇes VD, Sokol H, Doré J, Corthier G, Furet JP. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 2009;9:123. https://doi.org/10.1186/1471-2180-9-123 DOI: https://doi.org/10.1186/1471-2180-9-123
McGarigal K, Cushman S, Stafford S. Multivariate statistics for wildlife and ecology research. New York: Springer; 2000. 283 p. DOI: https://doi.org/10.1007/978-1-4612-1288-1
Milton K. Physiological characteristics of the genus Alouatta. Int J Primatol. 1987;8:428.
Mühulhauser M, Rivas TML. Laboratorio de microbiología: conocimientos básicos para un clínico. Rev Méd Clín Condes 2014;25: 569–579. https://doi.org/10.1016/S0716-8640(14)70072-0 DOI: https://doi.org/10.1016/S0716-8640(14)70072-0
Nakamura N, Amato KR, Garber P, Estrada A, Mackie RI, Gaskins HR. Analysis of the hydrogenotrophic microbiota of wild and captive Black Howler monkeys (Alouatta pigra) in Palenque National Park, Mexico. Am J Primatol. 2011;73:1–11. https://doi.org/10.1002/ajp.20961 DOI: https://doi.org/10.1002/ajp.20961
Oludairo OO, Kwaga JKP, Dzikwi AA, Kabir J. The genus Salmonella, isolation and occurrence in wildlife. Int J Microbiol Immunol Res. 2013;1:47-52.
Pastor-Nieto R. Health and Welfare of Howler Monkeys in Captivity. In: Kowalewski MM, Garber PA, Cortés-Ortíz L, Urbani B, Youlatos D, editor(s). Howler Monkeys, Developments in Primatology: Progress and Prospects. New York: Springer Science+Business Media; 2015. p. 313-355. DOI: https://doi.org/10.1007/978-1-4939-1960-4_12
Peel MM, Alfredson DA, Gerrard JG, Davis JM, Robson JM, McDougall RJ, Scullie BL, Akhurst RJ. Isolation, identification, and molecular characterization of strains of Photorhabdus luminescens from infected humans in Australia. J Clin Microbiol. 1999;37(1):3647-3653. https://doi.org/10.1128/JCM.37.11.3647-3653.1999 DOI: https://doi.org/10.1128/JCM.37.11.3647-3653.1999
Pombert JF, Sistek V, Boissinot M, Frenette M. Evolutionary relationships among salivarius streptococci as inferred from multilocus phylogenies based on 16S rRNAencoding, recA, secA, and secY gene sequences. BMC Microbiol. 2009;9:232. https://doi.org/10.1186/1471-2180-9-232 DOI: https://doi.org/10.1186/1471-2180-9-232
Pozo-Montuy G, Serio-Silva JC. Comportamiento alimentario de monos aulladores negros (Alouatta pigra, Lawrance, Cebidae) en hábitat fragmentado en Balancán, Tabasco, México. Acta Zool Mex. 2006;22:53-66. https://doi.org/10.21829/azm.2006.2232023 DOI: https://doi.org/10.21829/azm.2006.2232023
Pozo-Montuy G, Serio-Silva JC. Movement and resource use by a group of Alouatta pigra in a forest fragment in Balancán, México. Primates 2007;48:102-07. https://doi.org/10.1007/s10329-006-0026-x DOI: https://doi.org/10.1007/s10329-006-0026-x
Rwego IB, Isabirye-Basuta G, Gillespie TR, Goldberg TL. Gastrointestinal bacterial transmission among humans, mountain gorillas, and livestock in Bwindi impenetrable National Park, Uganda. Conserv Biol. 2008;22:1600-1607. https://doi.org/10.1111/j.1523-1739.2008.01018.x DOI: https://doi.org/10.1111/j.1523-1739.2008.01018.x
Sanz Y, Collado MC, Haros M, Dalmau J. Funciones metabólico-nutritivas de la microbiota gastrointestinal y su modulación a través de la dieta: probióticos y prebióticos. Acta Pediatr Esp. 2004;62:520-526.
Sikes RS, Animal Care and Use Committee of the American Society of Mammalogists. Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mammal. 2016;97:663–688. https://doi.org/10.1093/jmammal/gyw078 DOI: https://doi.org/10.1093/jmammal/gyw078
Stevens CE, Hume ID. Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiol Rev. 1998;78:393-427. https://doi.org/10.1152/physrev.1998.78.2.393 DOI: https://doi.org/10.1152/physrev.1998.78.2.393
Van Belle S, Estrada A. Demographic features of Alouatta pigra populations in extensive and fragmented forests. In: Estrada A, Garber PA, Pavelka MSM, Luecke L, editor(s). New perspectives in the study of Mesoamerican primates: distribution, ecology, and conservation. New York: Springer; 2006. p. 121–142. DOI: https://doi.org/10.1007/0-387-25872-8_6
Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011;334:105-108. https://doi.org/10.1126/science.1208344 DOI: https://doi.org/10.1126/science.1208344
Yildirim S, Yeoman CJ, Sipos M, Torralba M, Wilson BA, Goldberg TL, Stumpf RM, Leigh SR, White BA, Nelson KE. Characterization of the fecal microbiome from nonhuman wild primates reveals species specific microbial communities. PLoS ONE 2010;5:e13963. https://doi.org/10.1371/journal.pone.0013963 DOI: https://doi.org/10.1371/journal.pone.0013963
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Diego Zubillaga-Martín, Brenda Solórzano-García, Alfredo Yanez-Montalvo, Arit de León-Lorenzana, Luisa I. Falcón, Ella Vázquez-Domínguez, Brenda A Wilson. (2025). Gut microbiota signatures of the three Mexican primate species, including hybrid populations. PLOS ONE, 20(3), p.e0317657. https://doi.org/10.1371/journal.pone.0317657.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. La aceptación de manuscritos por parte de la revista implicará, además de su edición electrónica de acceso abierto bajo licencia Attribution-NonCommercial-ShareAlike 4.0 (CC BY NC SA), la inclusión y difusión del texto completo a través del repositorio institucional de la Universidad Nacional de Colombia y en todas aquellas bases de datos especializadas que el editor considere adecuadas para su indización con miras a incrementar la visibilidad de la revista.
2. Acta Biológica Colombiana permite a los autores archivar, descargar y compartir, la versión final publicada, así como las versiones pre-print y post-print incluyendo un encabezado con la referencia bibliográfica del articulo publicado.
3. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
4. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos institucionales, en su página web o en redes sociales cientificas como Academia, Researchgate; Mendelay) lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).