Publicado
REGULACIÓN TRANSCRIPCIONAL DE LA EXPRESIÓN DE LA NAD QUINASA DE Giardia duodenalis: UNA APROXIMACIÓN in silico
Transcriptional Regulation of Giardia duodenalis NAD Kinase Expression: an In Silico Approach
DOI:
https://doi.org/10.15446/abc.v29n3.96554Palabras clave:
expresión génica, metabolismo energético, reguladores transcripcionales (es)energy metabolism, gene expression, transcriptional regulatory elements (en)
Descargas
Archivos adicionales
Giardia duodenalis es un protozoario parásito de gran importancia en salud pública, ya que causa la enfermedad gastrointestinal más prevalente del mundo, la giardiasis. El tratamiento farmacológico para esta parasitosis consiste en la administración de nitroimidazoles y benzimidazoles, sin embargo, se han detectado resistencia al tratamiento y múltiples efectos secundarios. Por tal razón, en estudios anteriores se postuló a la NAD quinasa de G. duodenalis (glnadk), como posible blanco farmacológico. En este trabajo, se realizó una aproximación bioinformática de los mecanismos de regulación transcripcional de este gen. Para la regulación en cis, se partió de la búsqueda de elementos conservados en otros genes del parásito y, mediante el uso de los servidores MEME y Tomtom, se buscaron nuevos motivos y sitios de unión a factores de transcripción. Para la identificación de elementos reguladores trans con sitio de unión al promotor de glnadk, se empleó el servidor PROMO y, para la identificación de genes candidato a factor de transcripción en el genoma de G. duodenalis, alineamientos múltiples de secuencia. Se identificaron elementos reguladores en cis conservados, y nuevos motivos de unión a proteínas reguladoras en el promotor de glnadk. Adicionalmente, se identificaron posibles factores de transcripción que podrían participar en la regulación de glnadk, y se postularon genes candidato que codificarían para estos elementos reguladores.
Giardia duodenalis is a protozoan parasite of great public health importance, since it causes the most prevalent gastrointestinal disease in the world, giardiasis. Pharmacological treatment for this parasitosis consists of the administration of nitroimidazoles and benzimidazoles, however, resistance to treatment and multiple side effects have been detected. For this reason, in previous studies, G. duodenalis NAD kinase (glnadk) was postulated as a possible drug target. In this work, a bioinformatic approach to the transcriptional regulation mechanisms of this gene was carried out. For the cis regulation, we started from the search for conserved elements in other genes of the parasite and, through the use of the MEME and Tomtom servers, new motifs and binding sites for transcription factors were explored. For the scanning of trans regulatory elements with binding site to the glnadk promoter, the PROMO server was used, and, for the identification of candidate genes for a transcription factor in the G. duodenalis genome, multiple sequence alignments. Conserved cis regulatory elements and new regulatory protein binding motifs in the glnadk promoter were identified. Additionally, possible transcription factors that could participate in the regulation of glnadk were identified, and candidate genes that would code for these regulatory elements were postulated.
Referencias
Adam, R. D. (2021). Giardia duodenalis: Biology and Pathogenesis. Clinical Microbiology Reviews, 34(4). https://doi.org/10.1128/CMR.00024-19
Adedoja, A. N., McMahan, T., Neal, J. P., Hamal Dhakal, S., Jois, S., Romo, D., Hull, K. and Garlapati, S. (2020). Translation initiation factors GleIF4E2 and GleIF4A can interact directly with the components of the pre-initiation complex to facilitate translation initiation in Giardia lamblia. Molecular and Biochemical Parasitology, 236, 111258. https://doi.org/10.1016/j.molbiopara.2020.111258
Ansell, B. R. E., McConville, M. J., Baker, L., Korhonen, P. K., Emery, S. J., Svärd, S. G., Gasser, R. B. and Jex, A. R. (2016). Divergent Transcriptional Responses to Physiological and Xenobiotic Stress in Giardia duodenalis. Antimicrobial Agents and Chemotherapy, 60(10), 6034–6045. https://doi.org/10.1128/aac.00977-16
Ansell, B. R. E., McConville, M. J., Ma’ayeh, S. Y., Dagley, M. J., Gasser, R. B., Svärd, S. G. and Jex, A. R. (2015). Drug resistance in Giardia duodenalis. In Biotechnology Advances, 33(6). https://doi.org/10.1016/j.biotechadv.2015.04.009
Aravind, L., Anantharaman, V., Balaji, S., Babu, M., and Iyer, L. (2005). The many faces of the helix-turn-helix domain: Transcription regulation and beyond. FEMS Microbiology Reviews, 29(2), 231–262. https://doi.org/10.1016/j.femsre.2004.12.008
Bailey, T. L., Johnson, J., Grant, C. E. and Noble, W. S. (2015). The MEME Suite. Nucleic Acids Research, 43(1), 39–49. https://doi.org/10.1093/nar/gkv416
Barratt, K. S. and Arkell, R. M. (2018). ZIC2 in holoprosencephaly. In Advances in Experimental Medicine and Biology,1046, 269–299. https://doi.org/10.1007/978-981-10-7311-3_14
Bilodeau, D. Y., Sheridan, R. M., Balan, B., Jex, A. R. and Rissland, O. S. (2022). Precise gene models using long-read sequencing reveal a unique poly(A) signal in Giardia lamblia. RNA, 28(5), 668–682. https://doi.org/10.1261/rna.078793.121
Chini, C. C. S., Zeidler, J. D., Kashyap, S., Warner, G. and Chini, E. N. (2021). Evolving concepts in NAD+ metabolism. Cell Metabolism, 33(6), 1076–1087. https://doi.org/10.1016/j.cmet.2021.04.003
Chuang, S.-F., Su, L.-H., Cho, C.-C., Pan, Y.-J. and Sun, C.-H. (2012). Functional Redundancy of Two Pax-Like Proteins in Transcriptional Activation of Cyst Wall Protein Genes in Giardia lamblia. PLoS ONE, 7(2), e30614. https://doi.org/10.1371/journal.pone.0030614
Jutinico Shubach, L. M., Contreras Rodríguez, L. E., García Castañeda, J. E. and Ramírez Hernández, M. H. (2019). Functional identification and subcellular localization of NAD kinase in the protozoan parasite Giardia intestinalis. Revista Colombiana de Química, 48(1), 16–25. https://doi.org/10.15446/rev.colomb.quim.v48n1.75273
Einarsson, E. and Svärd, S. G. (2015). Encystation of Giardia intestinalis—a Journey from the Duodenum to the Colon. Current Tropical Medicine Reports, 2(3), 101–109. https://doi.org/10.1007/s40475-015-0048-9
Elmendorf, H. G., Singer, S. M., Pierce, J., Cowan, J., and Nash, T. E. (2001). Initiator and upstream elements in the α2-tubulin promoter of Giardia lamblia. Molecular and Biochemical Parasitology, 113(1), 157–169. https://doi.org/10.1016/S0166-6851(01)00211-0
Fink, M. Y. and Singer, S. M. (2017). The Intersection of Immune Responses, Microbiota, and Pathogenesis in Giardiasis. Trends in Parasitology, 33(11), 901–913. https://doi.org/10.1016/j.pt.2017.08.001
Goldstein, O., Meyer, K., Greenshpan, Y., Bujanover, N., Feigin, M., Ner-Gaon, H., Shay, T. and Gazit, R. (2016). Mapping Whole-Transcriptome Splicing in Mouse Hematopoietic Stem Cells. Stem Cell Reports, 8(1), 163–176. https://doi.org/10.1016/j.stemcr.2016.12.002
Gomez, C., Ramirez, M. E., Calixto-Galvez, M., Medel, O. and Rodríguez, M. A. (2010). Regulation of Gene Expression in Protozoa Parasites. Journal of Biomedicine and Biotechnology, 2010(1), 1–24. https://doi.org/10.1155/2010/726045
Gutiérrez, L. and Bartelt, L. (2024). Current Understanding of Giardia lamblia and Pathogenesis of Stunting and Cognitive Deficits in Children from Low- and Middle-Income Countries. Current Tropical Medicine Reports, 11(1), 28–39. https://doi.org/10.1007/s40475-024-00314-2
Haberle, V. and Stark, A. (2018). Eukaryotic core promoters and the functional basis of transcription initiation. Nature Reviews Molecular Cell Biology, 19(10), 621–637. https://doi.org/10.1038/s41580-018-0028-8
Haugen, S. P., Ross, W. and Gourse, R. L. (2008). Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Nature Reviews Microbiology, 6(7), 507–519. https://doi.org/10.1038/nrmicro1912
Huang, S.-W., Lin, Z.-Q., Tung, S.-Y., Su, L.-H., Ho, C.-C., Lee, G. A., and Sun, C.-H. (2021). A Novel Multiprotein Bridging Factor 1-Like Protein Induces Cyst Wall Protein Gene Expression and Cyst Differentiation in Giardia lamblia. International Journal of Molecular Sciences, 22(3), 1370. https://doi.org/10.3390/ijms22031370
Huang, Y. C., Su, L. H., Lee, G. a., Chiu, P. W., Cho, C. C., Wu, J. Y., and Sun, C. H. (2008). Regulation of cyst wall protein promoters by Myb2 in Giardia lamblia. Journal of Biological Chemistry, 283(45), 31021–31029. https://doi.org/10.1074/jbc.M805023200
Iqbal, T. and Nakagawa, T. (2024). The therapeutic perspective of NAD+ precursors in age-related diseases. Biochemical and Biophysical Research Communications, 702, 149590. https://doi.org/10.1016/j.bbrc.2024.149590
Jex, A. R., Svärd, S., Hagen, K. D., Starcevich, H., Emery-Corbin, S. J., Balan, B., Nosala, C. and Dawson, S. C. (2020). Recent advances in functional research in Giardia intestinalis. Advances in Parasitology, 107, 97–137. https://doi.org/10.1016/bs.apar.2019.12.002
Jin, Q., Zhang, F., Yan, T., Liu, Z., Wang, C., Ge, X., and Zhai, Q. (2010). C/EBP alpha regulates SIRT1 expression during adipogenesis. Cell Research, 20(4), 470–479. https://doi.org/10.1038/cr.2010.24
Kim, J., Park, E.-A., Shin, M. Y. and Park, S.-J. (2022). Identification of target genes regulated by encystation-induced transcription factor Myb2 using knockout mutagenesis in Giardia lamblia. Parasites & Vectors, 15(1), 360. https://doi.org/10.1186/s13071-022-05489-z
Lescot, M., Déhais P., Thijs, G., Marchal K., Moreau, Y., Van de Peer, Y., Rouzé P. and Rombauts S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1)https://doi.org/10.1093/nar/30.1.325
Li, B.-B., Wang, X., Tai, L., Ma, T.-T., Shalmani, A., Liu, W.-T., Li, W.-Q. and Chen, K.-M. (2018). NAD Kinases: Metabolic Targets Controlling Redox Co-enzymes and Reducing Power Partitioning in Plant Stress and Development. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00379
Li, L. and Wang, C. C. (2004). Capped mRNA with a Single Nucleotide Leader Is Optimally Translated in a Primitive Eukaryote, Giardia lamblia. Journal of Biological Chemistry, 279(15), 14656–14664. https://doi.org/10.1074/jbc.M309879200
Li, W. Y., Wang, X., Li, R., Li, W. Q. and Chen, K. M. (2014). Genome-wide analysis of the NADK gene family in plants. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0101051
Mahdavi, J., Motavallihaghi, S. and Ghasemikhah, R. (2022). Evaluation of clinical and paraclinical findings in patients with reactive arthritis caused by giardiasis: A systematic review. Seminars in Arthritis and Rheumatism, 57, 152094. https://doi.org/10.1016/j.semarthrit.2022.152094
Mørch, K. and Hanevik, K. (2020). Giardiasis treatment: an update with a focus on refractory disease. Current Opinion in Infectious Diseases, 33(5), 355–364. https://doi.org/10.1097/QCO.0000000000000668
Oka, S., Titus, A. S., Zablocki, D. and Sadoshima, J. (2023). Molecular properties and regulation of NAD+ kinase (NADK). Redox Biology, 59, 102561. https://doi.org/10.1016/j.redox.2022.102561
Ortega-Pierres, M. G., Jex, A. R., Ansell, B. R. E. and Svärd, S. G. (2018). Recent advances in the genomic and molecular biology of Giardia. Acta Tropica, 184, 67–72. https://doi.org/10.1016/j.actatropica.2017.09.004
Owen, D. L., and Farrar, M. A. (2017). STAT5 and CD4+ T Cell Immunity. F1000Research, 6, 32. https://doi.org/10.12688/f1000research.9838.1
Paixão-Côrtes, V. R., Salzano, F. M. and Bortolini, M. C. (2015). Origins and evolvability of the PAX family. Seminars in Cell & Developmental Biology, 44, 64–74. https://doi.org/10.1016/j.semcdb.2015.08.014
Parra-Marín, O., López-Pacheco, K., Hernández, R. and López-Villaseñor, I. (2020). The highly diverse TATA box-binding proteins among protists: A review. Molecular and Biochemical Parasitology, 239, 111312. https://doi.org/10.1016/j.molbiopara.2020.111312
Plata-Guzmán, L., Arroyo, R., León-Sicairos, N., Canizález-Román, A., López-Moreno, H., Chávez-Ontiveros, J., Garzón-Tiznado, J. A. and León-Sicairos, C. (2023). Stem–Loop Structures in Iron-Regulated mRNAs of Giardia duodenalis. International Journal of Environmental Research and Public Health, 20(4), 3556. https://doi.org/10.3390/ijerph20043556
Sigrist, C. J. A., de Castro, E., Cerutti, L., Cuche, B. A., Hulo, N., Bridge, A., Bougueleret, L. and Xenarios, I. (2012). New and continuing developments at PROSITE. Nucleic Acids Research, 41(1), 344–347. https://doi.org/10.1093/nar/gks1067
Spycher, C., Herman, E. K., Morf, L., Qi, W., Rehrauer, H., Aquino Fournier, C., Dacks, J. B. and Hehl, A. B. (2013). An ER-directed transcriptional response to unfolded protein stress in the absence of conserved sensor-transducer proteins in Giardia lamblia. Molecular Microbiology, 88(4), 754–771. https://doi.org/10.1111/mmi.12218
Su, L.-H., Pan, Y.-J., Huang, Y.-C., Cho, C.-C., Chen, C.-W., Huang, S.-W., Chuang, S.-F. and Sun, C.-H. (2011). A Novel E2F-like Protein Involved in Transcriptional Activation of Cyst Wall Protein Genes in Giardia lamblia. Journal of Biological Chemistry, 286(39), 34101–34120. https://doi.org/10.1074/jbc.M111.280206
Uniprot Consortium. (2021). UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research, 49(1), 480–489. https://doi.org/10.1093/nar/gkaa1100
Wang, C.-H., Su, L.-H., and Sun, C.-H. (2007). A Novel ARID/Bright-like Protein Involved in Transcriptional Activation of Cyst Wall Protein 1 Gene in Giardia lamblia. Journal of Biological Chemistry, 282(12), 8905–8914. https://doi.org/10.1074/jbc.M611170200
Wang, J., Chitsaz, F., Derbyshire, M. K., Gonzales, N. R., Gwadz, M., Lu, S., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C. J. and, Marchler-Bauer, A. (2023). The conserved domain database in 2023. Nucleic Acids Research, 51(1), 384–388. https://doi.org/10.1093/nar/gkac1096
Wang, X., Li, B.-B., Ma, T.-T., Sun, L.-Y., Tai, L., Hu, C.-H., Liu, W.-T., Li, W.-Q. and Chen, K.-M. (2020). The NAD kinase OsNADK1 affects the intracellular redox balance and enhances the tolerance of rice to drought. BMC Plant Biology, 20(1), 11. https://doi.org/10.1186/s12870-019-2234-8
Wang, X., Li, W.-Y., Zhang, M.-M., Gao, Y.-T., Liu, W.-T., Li, W.-Q., Muhammad, I. and Chen, K.-M. (2016). Identification and Functional Analysis of the NADK Gene Family in Wheat. Plant Molecular Biology Reporter, 34(1), 118–135. https://doi.org/10.1007/s11105-015-0904-8
Wang, Y.-T., Pan, Y.-J., Cho, C.-C., Lin, B.-C., Su, L.-H., Huang, Y.-C., and Sun, C.-H. (2010). A Novel Pax-like Protein Involved in Transcriptional Activation of Cyst Wall Protein Genes in Giardia lamblia. Journal of Biological Chemistry, 285(42), 32213–32226. https://doi.org/10.1074/jbc.M110.156620
Xu, F., Jiménez-González, A., Einarsson, E., Ástvaldsson, Á., Peirasmaki, D., Eckmann, L., Andersson, J. O., Svärd, S. G. and Jerlström-Hultqvist, J. (2020). The compact genome of Giardia muris reveals important steps in the evolution of intestinal protozoan parasites. Microbial Genomics, 6(8). https://doi.org/10.1099/mgen.0.000402
Yee, J., and Nash, T. E. (2006). Transient transfection and expression of firefly luciferase in Giardia lamblia. Proceedings of the National Academy of Sciences, 92(12), 5615–5619. https://doi.org/10.1073/pnas.92.12.5615
Yee, J., Tang, A., Lau, W. L., Ritter, H., Delport, D., Page, M., Adam, R. D., Müller, M., and Wu, G. (2007). Core histone genes of Giardia intestinalis: Genomic organization, promoter structure, and expression. BMC Molecular Biology, 8, 1–15. https://doi.org/10.1186/1471-2199-8-26
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. La aceptación de manuscritos por parte de la revista implicará, además de su edición electrónica de acceso abierto bajo licencia Attribution-NonCommercial-ShareAlike 4.0 (CC BY NC SA), la inclusión y difusión del texto completo a través del repositorio institucional de la Universidad Nacional de Colombia y en todas aquellas bases de datos especializadas que el editor considere adecuadas para su indización con miras a incrementar la visibilidad de la revista.
2. Acta Biológica Colombiana permite a los autores archivar, descargar y compartir, la versión final publicada, así como las versiones pre-print y post-print incluyendo un encabezado con la referencia bibliográfica del articulo publicado.
3. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
4. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos institucionales, en su página web o en redes sociales cientificas como Academia, Researchgate; Mendelay) lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).