Publicado
ECOPHYSIOLOGY AND GROWTH OF BASIL (Ocimum basilicum) UNDER SALINE STRESS AND SALICYLIC ACID
Ecofisiología y crecimiento de albahaca (Ocimum basilicum) bajo estrés salino y ácido salicílico
DOI:
https://doi.org/10.15446/abc.v28n1.97151Palabras clave:
photosynthesis, salinity, gas exchange (en)fotosíntesis, salinidad, intercambio de gases (es)
Descargas
Salinity is one of the major problems of modern agriculture, affecting physiological, growth and plant production. Basil (Ocimum basilicum) is a plant widely used in cooking, and in the pharmaceutical and cosmetics industries. Salicylic acid can be a strategy to mitigate the harmful effects of saline stress on basil plant. The present study aimed to evaluate plants with, gas exchange, chlorophyll a fluorescence and chlorophyll indices of basil (cv. Cinnamon) plants under saline stress and salicylic acid. The experimental design was a randomized block design in a 5x5 incomplete factorial scheme generated through the central composite design. The factors we five electrical conductivities of irrigation water (ECw– 0.5, 1.3, 3.25, 5.2 and 6.0 dS m-1) and five doses of salicylic acid (SA– 0.0, 0.29, 1.0, 1.71 and 2.0 mM), with five replications and two plants per replicate. Growth, gas exchange, chlorophyll a fluorescence and chlorophyll indices of O. basilicum cv. Cinnamon were evaluated. Canonical variables analysis and confidence ellipses (p ≤ 0.01) were performed to study the interrelationship between variables and factors. Salicylic acid alleviated the deleterious effects of salt stress on growth, gas exchange, chlorophyll fluorescence and chlorophyll indices of basil.
La salinidad es uno de los mayores problemas de la agricultura moderna, afectando la fisiología, el crecimiento y la producción vegetal. La albahaca (Ocimum basilicum) es una planta muy utilizada en la cocina y en las industrias farmacéutica y cosmética. El ácido salicílico puede ser una estrategia para mitigar los efectos nocivos del estrés salino en las plantas de albahaca. El objetivo del presente estudio fue evaluar el crecimiento, intercambio de gases, fluorescencia de clorofila a e índices de clorofila de plantas de albahaca (cv. Cinnamon) bajo estrés salino y ácido salicílico. El diseño experimental fue un diseño de bloques al azar en un esquema factorial incompleto de 5x5 generado a través del diseño compuesto central. Los factores fueron cinco conductividades eléctricas del agua de riego (ECw– 0,5, 1,3, 3,25, 5.2 y 6,0 dS m-1) y cinco dosis de ácido salicílico (SA– 0,0, 0,29, 1,0, 1.71 y 2,0 mM), con cinco repeticiones y dos plantas por réplica. Crecimiento, intercambio de gases, fluorescencia de clorofila a e índices de clorofila de O. basilicum cv. Cinnamon fue evaluado. Se realizaron análisis de variables canónicas y elipses de confianza (p< 0.01) para estudiar la interrelación entre variables y factores. El ácido salicílico alivió los efectos nocivos del estrés salino sobre el crecimiento, el intercambio de gases, la fluorescencia de la clorofila y los índices de clorofila de la albahaca.
Referencias
Astaneh, R. K., Bolandnazar, S., Nahandi, F. Z., and Oustan, S. (2019). Effects of selenium on enzymatic changes and productivity of garlic under salinity stress. South African Journal of Botany, 121, 447-455. https://doi.org/10.1016/j.sajb.2018.10.037 DOI: https://doi.org/10.1016/j.sajb.2018.10.037
Attia, H., Ouhibi, C., Ellili, A., Msilini, N., Bouzaïen, G., Karray, N., and Lachaâl, M. (2011). Analysis of salinity effects on basil leaf surface area, photosynthetic activity, and growth. Acta Physiologiae Plantarum, 33(3), 823-833. https://doi.org/10.1007/s11738-010-0607-6 DOI: https://doi.org/10.1007/s11738-010-0607-6
Batista, V. C. V., Pereira, I. M. C., de Oliveira Paula-Marinho, S., Canuto, K. M., Pereira, R. D. C. A., Rodrigues, T. H. S., Daloso, D. M., Gomes-Filho, E., and Carvalho, H. H. (2019). Salicylic acid modulates primary and volatile metabolites to alleviate salt stress-induced photosynthesis impairment on medicinal plant Egletes viscosa. Environmental and Experimental Botany, 167, 103870. https://doi.org/10.1016/j.envexpbot.2019.103870 DOI: https://doi.org/10.1016/j.envexpbot.2019.103870
Bekhradi, F., Delshad, M., Marín, A., Luna, M. C., Garrido, Y., Kashi, A., Babalar, M., and Gil, M. I. (2015). Effects of salt stress on physiological and postharvest quality characteristics of different Iranian genotypes of basil. Horticulture, Environment, and Biotechnology, 56(6), 777-785. https://doi.org/10.1007/s13580-015-1095-9 DOI: https://doi.org/10.1007/s13580-015-1095-9
Blank, A. F., Santa Rosa, Y. R., de Carvalho Filho, J. L. S., dos Santos, C. A., Arrigoni-Blank, M., dos Santos Niculau, E. F., and Alves, P. B. (2012). A diallel study of yield components and essential oil constituents in basil (Ocimum basilicum L.). Industrial Crops and Products, 38, 93-98. https://doi.org/10.1016/j.indcrop.2012.01.015 DOI: https://doi.org/10.1016/j.indcrop.2012.01.015
Blank, A. F., Santana, A. D. D. D., Arrigoni-Blank, M. D. F., Andrade, T. M., Pinto, J. A. O., Nascimento Júnior, A. F. D., and Luz, J. M. Q. (2015). ‘Norine’, a cinnamon-linalool hybrid cultivar of basil. Crop Breeding and Applied Biotechnology, 15, 285-289. https://doi.org/10.1590/1984-70332015v15n4c48 DOI: https://doi.org/10.1590/1984-70332015v15n4c48
Bordenave, C. D., Rocco, R., Maiale, S. J., Campestre, M. P., Ruiz, O. A., Rodríguez, A. A., and Menéndez, A. B. (2019). Chlorophyll a fluorescence analysis reveals divergent photosystem II responses to saline, alkaline and saline–alkaline stresses in the two Lotus japonicus model ecotypes MG20 and Gifu-129. Acta Physiologiae Plantarum, 41(9), 1-13. https://doi.org/10.1007/s11738-019-2956-0 DOI: https://doi.org/10.1007/s11738-019-2956-0
Bybordi, A. (2012). Effect of ascorbic acid and silicium on photosynthesis, antioxidant enzyme activity, and fatty acid contents in canola exposure to salt stress. Journal of Integrative Agriculture, 11(10), 1610-1620. https://doi.org/10.1016/S2095-3119(12)60164-6 DOI: https://doi.org/10.1016/S2095-3119(12)60164-6
Cirillo, C., De Micco, V., Arena, C., Carillo, P., Pannico, A., De Pascale, S., and Rouphael, Y. (2019). Biochemical, physiological and anatomical mechanisms of adaptation of Callistemon citrinus and Viburnum lucidum to NaCl and CaCl2 salinization. Frontiers in Plant Science, 10, 742. https://doi.org/10.3389/fpls.2019.00742 DOI: https://doi.org/10.3389/fpls.2019.00742
Dastranj, M., and Sepaskhah, A. R. (2019). Response of saffron (Crocus sativus L.) to irrigation water salinity, irrigation regime and planting method: Physiological growth and gas exchange. Scientia Horticulturae, 257, 108714. https://doi.org/10.1016/j.scienta.2019.108714 DOI: https://doi.org/10.1016/j.scienta.2019.108714
El-Esawi, M. A., Alaraidh, I. A., Alsahli, A. A., Alzahrani, S. M., Ali, H. M., Alayafi, A. A., and Ahmad, M. (2018). Serratia liquefaciens KM4 improves salt stress tolerance in maize by regulating redox potential, ion homeostasis, leaf gas exchange and stress-related gene expression. International Journal of Molecular Sciences, 19(11), 3310. https://doi.org/10.3390/ijms19113310 DOI: https://doi.org/10.3390/ijms19113310
Elhindi, K., Sharaf El Din, A., Abdel-Salam, E., and Elgorban, A. (2016). Amelioration of salinity stress in different basil (Ocimum basilicum L.) varieties by vesicular-arbuscular mycorrhizal fungi. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 66(7), 583-592. https://doi.org/10.1080/09064710.2016.1204467 DOI: https://doi.org/10.1080/09064710.2016.1204467
El-Nasharty, A. B., El-Nwehy, S. S., Aly, E., El-nour, A. B. O. U., and Rezk, A. I. (2019). Impact of salicylic acid foliar application on two wheat cultivars grown under saline conditions. Pakistan Journal of Botany, 51(6), 1939-1944. https://doi.org/10.30848/PJB2019-6(19) DOI: https://doi.org/10.30848/PJB2019-6(19)
Friendly M., and Fox, J. (2017). candisc: visualizing generalized canonical discriminant and canonical correlation analysis. R package version 0.8-0.
Hao, L., Zhao, Y., Jin, D., Zhang, L., Bi, X., Chen, H., Xu, Q., Chunyan, M., and Li, G. (2012). Salicylic acid-altering Arabidopsis mutants response to salt stress. Plant and Soil, 354(1), 81-95. https://doi.org/10.1007/s11104-011-1046-x DOI: https://doi.org/10.1007/s11104-011-1046-x
Huang, C. J., Wei, G., Jie, Y. C., Xu, J. J., Zhao, S. Y., Wang, L. C., and Anjum, D. S. (2015). Responses of gas exchange, chlorophyll synthesis and ROS-scavenging systems to salinity stress in two ramie (Boehmeria nivea L.) cultivars. Photosynthetica, 53(3), 455-463. https://doi.org/10.1007/s11099-015-0127-0 DOI: https://doi.org/10.1007/s11099-015-0127-0
Idrees, M., Naeem, M., Aftab, T., and Khan, M. M. A. (2011). Salicylic acid mitigates salinity stress by improving antioxidant defence system and enhances vincristine and vinblastine alkaloids production in periwinkle [Catharanthus roseus (L.) G. Don]. Acta Physiologiae Plantarum, 33, 987-999. https://doi.org/10.1007/s11738-010-0631-6 DOI: https://doi.org/10.1007/s11738-010-0631-6
Idrees, M., Naeem, M., Khan, M. N., Aftab, T., and Khan, M. M. A. (2012). Alleviation of salt stress in lemongrass by salicylic acid. Protoplasma, 249, 709-720. https://doi.org/10.1007/s00709-011-0314-1 DOI: https://doi.org/10.1007/s00709-011-0314-1
Jakovljević, D. Z., Topuzović, M. D., Stanković, M. S., and Bojović, B. M. (2017). Changes in antioxidant enzyme activity in response to salinity-induced oxidative stress during early growth of sweet basil. Horticulture, Environment, and Biotechnology, 58(3), 240-246. Doi: https://doi.org/10.1007/s13580-017-0173-6 DOI: https://doi.org/10.1007/s13580-017-0173-6
Javed, M., Zafar, Z. U., and Ashraf, M. (2019). Leaf proteome analysis signified that photosynthesis and antioxidants are key indicators of salinity tolerance in canola (Brassica napus L.). Pakistan Journal of Botany, 51(6), 1955-1968. https://doi.org/10.30848/PJB2019-6(38) DOI: https://doi.org/10.30848/PJB2019-6(38)
Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., and Shabala, S. (2013). Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. Journal of Experimental Botany, 64(8), 2255-2268. https://doi.org/10.1093/jxb/ert085 DOI: https://doi.org/10.1093/jxb/ert085
Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., and Shabala, S. (2015). Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regulation, 76(1), 25-40. https://doi.org/10.1007/s10725-015-0028-z DOI: https://doi.org/10.1007/s10725-015-0028-z
Jini, D., and Joseph, B. (2017). Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Science, 24(2), 97-108. https://doi.org/10.1016/j.rsci.2016.07.007 DOI: https://doi.org/10.1016/j.rsci.2016.07.007
Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., Cetner, M. D., Łukasik, I., Ladle, R. J. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38(4), 1-11. https://doi.org/10.1007/s11738-016-2113-y DOI: https://doi.org/10.1007/s11738-016-2113-y
Kaushal, M., and Wani, S. P. (2016). Rhizobacterial-plant interactions: strategies ensuring plant growth promotion under drought and salinity stress. Agriculture, Ecosystems & Environment, 231, 68-78. https://doi.org/10.1016/j.agee.2016.06.031 DOI: https://doi.org/10.1016/j.agee.2016.06.031
Khan, M. I. R., Asgher, M., and Khan, N. A. (2014). Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiology and Biochemistry, 80, 67-74. https://doi.org/10.1016/j.plaphy.2014.03.026 DOI: https://doi.org/10.1016/j.plaphy.2014.03.026
Li, T., Hu, Y., Du, X., Tang, H., Shen, C., and Wu, J. (2014). Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. PLOS One, 9(10), e109492. https://doi.org/10.1371/journal.pone.0109492 DOI: https://doi.org/10.1371/journal.pone.0109492
Li, Y., Zhang, T., Zhang, Z., and He, K. (2019). The physiological and biochemical photosynthetic properties of Lycium ruthenicum Murr in response to salinity and drought. Scientia Horticulturae, 256, 108530. https://doi.org/10.1016/j.scienta.2019.05.057 DOI: https://doi.org/10.1016/j.scienta.2019.05.057
Lung, I., Soran, M. L., Opriş, O., Truşcă, M. R. C., Niinemets, Ü., & Copolovici, L. (2016). Induction of stress volatiles and changes in essential oil content and composition upon microwave exposure in the aromatic plant Ocimum basilicum. Science of the Total Environment, 569, 489-495. https://doi.org/10.1016/j.scitotenv.2016.06.147 DOI: https://doi.org/10.1016/j.scitotenv.2016.06.147
Melo, H. F. D., Souza, E. R. D., and Cunha, J. C. (2017). Fluorescence of chlorophyll a and photosynthetic pigments in Atriplex nummularia under abiotic stresses. Revista Brasileira de Engenharia Agrícola e Ambiental, 21, 232-237. https://doi.org/10.1590/1807-1929/agriambi.v21n4p232-237 DOI: https://doi.org/10.1590/1807-1929/agriambi.v21n4p232-237
Morales, S. G., Trejo-Téllez, L. I., Gómez Merino, F. C., Caldana, C., Espinosa-Victoria, D., and Herrera Cabrera, B. E. (2012). Growth, photosynthetic activity, and potassium and sodium concentration in rice plants under salt stress. Acta Scientiarum. Agronomy, 34, 317-324. https://doi.org/10.1590/S1807-86212012000300012 DOI: https://doi.org/10.4025/actasciagron.v34i3.13687
Nazar, R., Iqbal, N., Syeed, S., and Khan, N. A. (2011). Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology, 168(8), 807-815. https://doi.org/10.1016/j.jplph.2010.11.001 DOI: https://doi.org/10.1016/j.jplph.2010.11.001
Poór, P., Gémes, K., Horváth, F., Szepesi, A., Simon, M. L., and Tari, I. (2011). Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress. Plant Biology, 13(1), 105-114. https://doi.org/10.1111/j.1438-8677.2010.00344.x DOI: https://doi.org/10.1111/j.1438-8677.2010.00344.x
R Core Team. (2020). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Rocha, M. D. A. M., Lacerda, C. F. D., Bezerra, M. A., Barbosa, F. E. L., Feitosa, H. D. O., and Sousa, C. H. C. D. (2016). Physiological responses of three woody species seedlings under water stress, in soil with and without organic matter. Revista Árvore, 40, 455-464. https://doi.org/10.1590/0100-67622016000300009 DOI: https://doi.org/10.1590/0100-67622016000300009
Sako, K., Sunaoshi, Y., Tanaka, M., Matsui, A., and Seki, M. (2018). The duration of ethanol-induced high-salinity stress tolerance in Arabidopsis thaliana. Plant Signaling & Behavior, 13(8), e1500065. https://doi.org/10.1080/15592324.2018.1500065 DOI: https://doi.org/10.1080/15592324.2018.1500065
Sarabi, B., Fresneau, C., Ghaderi, N., Bolandnazar, S., Streb, P., Badeck, F. W., Citerne, S., Tangama, M., and Ghashghaie, J. (2019). Stomatal and non-stomatal limitations are responsible in down-regulation of photosynthesis in melon plants grown under the saline condition: Application of carbon isotope discrimination as a reliable proxy Plant Physiology and Biochemistry, 141, 1-19. https://doi.org/10.1016/j.plaphy.2019.05.010 DOI: https://doi.org/10.1016/j.plaphy.2019.05.010
Shahbaz, M., Abid, A., Masood, A., and Waraich, E. A. (2017). Foliar-applied trehalose modulates growth, mineral nutrition, photosynthetic ability, and oxidative defense system of rice (Oryza sativa L.) under saline stress. Journal of Plant Nutrition, 40(4), 584-599. https://doi.org/10.1080/01904167.2016.1263319 DOI: https://doi.org/10.1080/01904167.2016.1263319
Shams, M., Ekinci, M., Ors, S., Turan, M., Agar, G., Kul, R., and Yildirim, E. (2019). Nitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulation. Physiology and Molecular Biology of Plants, 25(5), 1149-1161. https://doi.org/10.1007/s12298-019-00692-2 DOI: https://doi.org/10.1007/s12298-019-00692-2
Silva, F. G. D., Dutra, W. F., Dutra, A. F., Oliveira, I. M. D., Filgueiras, L., and Melo, A. S. D. (2015). Trocas gasosas e fluorescência da clorofila em plantas de berinjela sob lâminas de irrigação. Revista Brasileira de Engenharia Agrícola e Ambiental, 19, 946-952. https://doi.org/10.1590/1807-1929/agriambi.v19n10p946-952 DOI: https://doi.org/10.1590/1807-1929/agriambi.v19n10p946-952
Silva, T. I., Lopes, M. D. F. D. Q., Nóbrega, J. S., Figueiredo, F. R. A., da Silva, R. T., & Dias, T. J. (2022). Basil (Ocimum basilicum) growth under saline stress and salicylic acid. Indian Journal of Traditional Knowledge, 21(2), 443-449. https://doi.org/10.56042/ijtk.v21i2.33442 DOI: https://doi.org/10.56042/ijtk.v21i2.33442
Tavallali, V., Kiani, M., & Hojati, S. (2019). Iron nanocomplexes and iron chelate improve biological activities of sweet basil (Ocimum basilicum L.). Plant Physiology and Biochemistry, 144, 445-454. https://doi.org/10.1016/j.plaphy.2019.10.021 DOI: https://doi.org/10.1016/j.plaphy.2019.10.021
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Máximo A. Correia, Luderlândio de A. Silva, Jackson S. Nóbrega, Lauter S. Souto, Larissa A. Brito, Romulo C. L. Moreira, Anielson dos S. Souza, Francisco V. da S. Sá. (2024). Salicylic acid and soaking times on the emergence, gas exchange and early growth of umbu. Revista Caatinga, 37 https://doi.org/10.1590/1983-21252024v3712060rc.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. La aceptación de manuscritos por parte de la revista implicará, además de su edición electrónica de acceso abierto bajo licencia Attribution-NonCommercial-ShareAlike 4.0 (CC BY NC SA), la inclusión y difusión del texto completo a través del repositorio institucional de la Universidad Nacional de Colombia y en todas aquellas bases de datos especializadas que el editor considere adecuadas para su indización con miras a incrementar la visibilidad de la revista.
2. Acta Biológica Colombiana permite a los autores archivar, descargar y compartir, la versión final publicada, así como las versiones pre-print y post-print incluyendo un encabezado con la referencia bibliográfica del articulo publicado.
3. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
4. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos institucionales, en su página web o en redes sociales cientificas como Academia, Researchgate; Mendelay) lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).