
Publicado
NEW METHOD OF SULFADIAZINE RESIDUE BIODEGRADATION IN POULTRY MANURE BY SPORE-BOUNDING LACCASE
Nuevo método de biodegradación de residuos de sulfadiazina en estiércol de aves de corral mediante lacasa de esporas
DOI:
https://doi.org/10.15446/abc.v28n3.99042Palabras clave:
Laccase, Antibiotics, Sulfadiazine, Biodegradation, Poultry (en)Biodegradación, Lacasa, Aves de corral, Sulfadiazina, Antibióticos (es)
Descargas
Antibiotics have been used in livestock farming worldwide. In poultry farming, sulfonamide antibiotics are mainly used to inhibit microbial infection. Sulfadiazine (SDZ) is one type of sulfonamide that is secreted into the ecosystem through feces and urine owing to its low adsorption and degradation in the animal intestine. In this study, the spore-bound laccase from the Bacillus sp. strains was investigated for its potential for degradation of SDZ. The highest laccase activity was selected to degrade the SDZ residue in the poultry feces. The results demonstrated that the spore-bound laccase of Bacillus sp. PM45 successfully reduced the residue of SDZ in poultry manure by 98.00±0.50 %. This work gained new knowledge and the method is cost-effective and more eco-friendly for antibiotic residue treatment.
Los antibióticos se han utilizado en la ganadería de todo el mundo. En avicultura, los antibióticos sulfonamídicos se utilizan principalmente para inhibir la infección microbiana. La sulfadiazina (SDZ) es un tipo de sulfonamida que se segrega al ecosistema a través de las heces y la orina debido a su baja adsorción y degradación en el intestino animal. En este estudio, se investigó la actividad de la lacasa unida a esporas de cepas de Bacillus sp. y su potencial de degradación de SDZ. Se seleccionó la mayor actividad de lacasa para degradar los residuos de SDZ en las heces de las aves de corral. Los resultados demostraron que la lacasa unida a esporas de Bacillus sp. PM45 reducía con éxito el residuo de SDZ en el estiércol avícola en un 98,00±0,50 %. Este trabajo aportó nuevos conocimientos y el método es rentable y más ecológico para el tratamiento de residuos de antibióticos.
Referencias
Arregui, L., Ayala, M., Gomez-Gil, X., Gutierrez-Soto, G., Hernandez-Luna, C. E., Herrera de Los Santos, M., Levin, L., Rojo-Dominguez, A., Romero-Martinez, D., Saparrat, M. C. N., Trujillo-Roldan, M. A., and Valdez-Cruz, N. A. (2019). Laccases: structure, function, and potential application in water bioremediation. Microb Cell Fact, 18(200). https://doi.org/10.1186/s12934-019-1248-0 DOI: https://doi.org/10.1186/s12934-019-1248-0
Bai, Y., Xu, R., Wang, Q. P., Zhang, Y. R., and Yang, Z. H. (2019). Sludge anaerobic digestion with high concentrations of tetracyclines and sulfonamides: Dynamics of microbial communities and change of antibiotic resistance genes. Bioresour Technol, 276, 51-59. https://doi.org/10.1016/j.biortech.2018.12.066 DOI: https://doi.org/10.1016/j.biortech.2018.12.066
Cañas, A. I., and Camarero, S. (2010). Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv, 28(6), 694-705. https://doi.org/10.1016/j.biotechadv.2010.05.002 DOI: https://doi.org/10.1016/j.biotechadv.2010.05.002
Chen, H., Liu, S., Xu, X. R., Zhou, G. J., Liu, S. S., Yue, W. Z., Sun, K. F., and Ying, G. G. (2015). Antibiotics in the coastal environment of the Hailing Bay region, South China Sea: Spatial distribution, source analysis and ecological risks. Mar Pollut Bull, 95(1), 365-73. https://doi.org/10.1016/j.marpolbul.2015.04.025 DOI: https://doi.org/10.1016/j.marpolbul.2015.04.025
Ding, H., Wu, Y., Zou, B., Lou, Q., Zhang, W., Zhong, J., Lu, L., and Dai, G. (2016). Simultaneous removal and degradation characteristics of sulfonamide, tetracycline, and quinolone antibiotics by laccase-mediated oxidation coupled with soil adsorption. J Hazard Mater, 307, 350-358. https://doi.org/10.1016/j.jhazmat.2015.12.062 DOI: https://doi.org/10.1016/j.jhazmat.2015.12.062
García-Delgado, C., Eymar, E., Camacho-Arévalo, R., Petruccioli, M., Crognale, S., and D’Annibale, A. (2018). Degradation of tetracyclines and sulfomanides by stevensite and biochar immobilized laccase systems and impact on residual antibiotic activity. J Chem Technol Biotechnol, 93(12), 3394-3409. https://doi.org/10.1002/jctb.5697 DOI: https://doi.org/10.1002/jctb.5697
Li, R., Zhou, T., Khan, A., Ling, Z., Sharma, M., Feng, P., Ali, G., Saif, I., Wang, H., Li, W., and Liu, P. (2021). Feed-additive of bioengineering strain with surfacedisplayed laccase degrades sulfadiazine in broiler manure and maintains intestine flora structure. J Hazard Mater, 406. 124440. https://doi.org/10.1016/j.jhazmat.2020.124440 DOI: https://doi.org/10.1016/j.jhazmat.2020.124440
Loncar, N., Gligorijevic, N., Bozic, N., and Vujcic, Z. (2014). Congo red degrading laccases from Bacillus amyloliquefaciens strains isolated from salt spring in Serbia. Int Biodeter Biodegrad, 91, 18-23. https://doi.org/10.1016/j.ibiod.2014.03.008 DOI: https://doi.org/10.1016/j.ibiod.2014.03.008
Lu, L., Zhao, M., Li, G. F., Li, J., Wang, T. N., Li, D. B., and Xu, T. F. (2012). Decolorization of synthetic dyes by immobilized spore from Bacillus amyloliquefaciens. Catal Commun, 26(5), 58-62. https://doi.org/10.1016/j.catcom.2012.04.024 DOI: https://doi.org/10.1016/j.catcom.2012.04.024
Mattossovich, R., Iacono, R., Cangiano, G., Cobucci-Ponzano, B., Isticato, R., Moracci, M., and Ricca, E. (2017). Conversion of xylan by recyclable spores of Bacillus subtilis displaying thermophilic enzymes. Microb Cell Fact, 16(218). https://doi.org/10.1186/s12934-017-0833-3 DOI: https://doi.org/10.1186/s12934-017-0833-3
Mohammed, S. A., and Zebary, H. Y. S. (2013). Spectrophotometric determination of sulfadiazine via diazotization and coupling reaction – application to pharmaceutical preparations. Rafidain J Sci, 24(11), 61-73. http://dx.doi.org/10.33899/rjs.2013.80282 DOI: https://doi.org/10.33899/rjs.2013.80282
Oberoi, A. S., Jia, Y., Zhang, H., Khanal, S. K., and Lu, H. (2019). Insights into the fate and removal of antibiotics in engineered biological treatment systems: A Critical Review. Environ Sci Technol, 53(13), 7234-7264. https://doi.org/10.1021/acs.est.9b01131 DOI: https://doi.org/10.1021/acs.est.9b01131
Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., and Laxminarayan, R. (2019). Global trends in antimicrobial use in food animals. PNAS USA, 112(18), 5649-5654. https://doi.org/10.1073/pnas.1503141112 DOI: https://doi.org/10.1073/pnas.1503141112
Wang, C. L., Zhao, M., Lu, L., Wei, X. D., and Li, T. L. (2011). Characterization of spore laccase from Bacillus subtilis WD23 and its use in dye decolorization. Afr J Biotechnol, 10(11), 2186-2192. https://doi.org/10.5897/AJB10.937
Wang, C. L., Zhao, M., Wei, X. D., Li, T. L., and Lu, L. (2010). Characteristics of spore-bound laccase from Bacillus subtilis WD23 and its use in dye decolorization. Adv Mater Res, 113-116, 226-230. https://doi.org/10.4028/www.scientific.net/AMR.113-116.226 DOI: https://doi.org/10.4028/www.scientific.net/AMR.113-116.226
Weng, S. S., Ku, K. L., and Lai, H. T. (2012). The implication of mediators for enhancement of laccase oxidation of sulfonamide antibiotics. Bioresour Technol, 113, 259-64. https://doi.org/10.1016/j.biortech.2011.12.111 DOI: https://doi.org/10.1016/j.biortech.2011.12.111
Xu, W., Zhang, G., Li, X., Zou, S., Li, P., Hu, Z., and Li, J. (2007). Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Resour, 41(19), 4526-4534. https://doi.org/10.1016/j.watres.2007.06.023 DOI: https://doi.org/10.1016/j.watres.2007.06.023
Zhang, Y., Hu, S., Zhang, H., Shen, G., Yuan, Z., and Zhang, W. (2017). Degradation kinetics and mechanism of sulfadiazine and sulfamethoxazole in an agricultural soil system with manure application. Sci Total Environ, 607-608, 1348-1356. https://doi.org/10.1016/j.scitotenv.2017.07.083 DOI: https://doi.org/10.1016/j.scitotenv.2017.07.083
Zhou, R., Yu, H., Yuan, P., Fan, J., Chen, L., Li, Y., Ma, F., and Zhang, X. (2018). Heterologous expression and characterization of three laccases obtained from Pleurotus ostreatus HAUCC 162 for removal of environmental pollutants. J Hazard Mater, 344, 499-510. https://doi.org/10.1016/j.jhazmat.2017.10.055 DOI: https://doi.org/10.1016/j.jhazmat.2017.10.055
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. La aceptación de manuscritos por parte de la revista implicará, además de su edición electrónica de acceso abierto bajo licencia Attribution-NonCommercial-ShareAlike 4.0 (CC BY NC SA), la inclusión y difusión del texto completo a través del repositorio institucional de la Universidad Nacional de Colombia y en todas aquellas bases de datos especializadas que el editor considere adecuadas para su indización con miras a incrementar la visibilidad de la revista.
2. Acta Biológica Colombiana permite a los autores archivar, descargar y compartir, la versión final publicada, así como las versiones pre-print y post-print incluyendo un encabezado con la referencia bibliográfica del articulo publicado.
3. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
4. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos institucionales, en su página web o en redes sociales cientificas como Academia, Researchgate; Mendelay) lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).