Published

2024-01-02

THE ROLE OF BACTERIAL AND ARCHAEA IN DETERMINING THE METABOLIC PATHWAY OF BIOGAS FERMENTATION AT LOW TEMPERATURES

Papel de las bacterias y las arqueas en la determinación de la vía metabólica de la fermentación del biogás a baja temperatura

DOI:

https://doi.org/10.15446/abc.v29n1.106266

Keywords:

Environmental condition, Hydrolytic bacteria, Methane formation pathway, Microbial metabolic function (en)
Bacterias hidrolíticas, Condiciones ambientales, Función metabólica microbiana, Vía de formación del metano (es)

Downloads

Authors

The challenge in achieving large-scale biogas production still lies in the biogas fermentation process at low temperatures. Our goal was to delve into the metabolic pathway behind the formation of biogas at these lower temperatures, focusing on the dominant bacterial and archaeal communities. Employing a batch system with activated sludge inoculum at 10°C, we fermented cow manure at 12°C for 150 days. Through genetic sequencing and taxonomic analysis using OTUs from the 16S rDNA gene, we investigated bacterial and archaeal species. Correlation analysis between their abundance was conducted using Pearson correlation and t-tests via IBM SPSS Statistics. Our findings revealed a biogas production of around 0.74 L/day, with CH4 levels surpassing 0.45 L/g VS. Peak efficiency occurred between day 60 and 110, reaching its apex on day 90. Clostridium cellulovorans dominated, ranging from 13.9% to 27%, followed by Terrisporobacter petrolarius, around 16.2% to 23%. Specifically, the formation of biogas (CH4) predominantly occurred through the H2 pathway, led by significant hydrogenotrophic Archaea OTUs like Methanocorpusculum sinense (ranging from 4.95% to 37.10%) and Methanobrevibacter millerae (with relative abundances between 2.00% and 11.20%)

El reto para lograr la producción de biogás a gran escala sigue residiendo en el proceso de fermentación de este a bajas temperaturas. Nuestro objetivo fue profundizar en la ruta metabólica que subyace a la formación de biogás a bajas temperaturas, centrándonos en las comunidades bacterianas y arqueas dominantes. Empleando un sistema discontinuo con inóculo de lodos activados a 10°C, fermentamos estiércol de vaca a 12°C durante 150 días. Mediante secuenciación genética y análisis taxonómico utilizando OTU del gen 16S rDNA, investigamos las especies bacterianas y arqueas. El análisis de correlación entre su abundancia se llevó a cabo mediante la correlación de Pearson y pruebas t a través de IBM SPSS Statistics. Nuestros resultados revelaron una producción de biogás de alrededor de 0,74 L/día, con niveles de CH4 superiores a 0,45 L/g VS. El pico de eficiencia se produjo entre los días 60 y 110, alcanzando su ápice el día 90. Predominó Clostridium cellulovorans, con un rango del 13,9% al 27%, seguido de Terrisporobacter petrolarius, con un rango del 16,2% al 23%. En concreto, la formación de biogás (CH4) se produjo predominantemente a través de la vía del H2, liderada por importantes OTU de arqueas hidrogenotróficas como Methanocorpusculum sinense (entre el 4,95% y el 37,10%) y Methanobrevibacter millerae (con abundancias relativas entre el 2,00% y el 11,20%).

References

Achinas, S., Li, Y., Achinas, V. and Jan, G. J. W. (2018). Influence of sheep manure addition on biogas potential and methanogenic communities during cow dung digestion under mesophilic conditions. Sustainable Environment Research, 28(5), 240–246. https://doi.org/10.1016/j.serj.2018.03.003 DOI: https://doi.org/10.1016/j.serj.2018.03.003

Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. and Wolfe, R. (1979). Methanogens: reevaluation of a unique biological group. Microbiological Reviews, 43(2), 260–296. https://doi.org/10.1128/mr.43.2.260-296.1979 DOI: https://doi.org/10.1128/MMBR.43.2.260-296.1979

Bialek, K., Kumar, A., Mahony, T., Lens, P. N. and O’Flaherty, V. (2012). Microbial community structure and dynamics in anaerobic fluidized-bed and granular sludge-bed reactors: influence of operational temperature and reactor configuration. Microbial Biotechnology, 5(6), 738-752. https://doi.org/10.1111/j.1751-7915.2012.00364.x DOI: https://doi.org/10.1111/j.1751-7915.2012.00364.x

Biavati, B., Vasta, M. and Ferry, J. G. (1988). Isolation and characterization of” Methanosphaera cuniculi” sp. nov. Applied and Environmental Microbiology, 54(3), 768–771. https://doi.org/10.1128/aem.54.3.768-771.1988 DOI: https://doi.org/10.1128/aem.54.3.768-771.1988

Blotevogel, K.-H. and Fischer, U. (1989). Transfer of Methanococcus frisius to the genus Methanosarcina as Methanosarcina frisia comb. nov. International Journal of Systematic and Evolutionary Microbiology, 39(1), 91–92. https://doi.org/10.1099/00207713-39-1-91 DOI: https://doi.org/10.1099/00207713-39-1-91

Borrel, G., Joblin, K., Guedon, A., Colombet, J., Tardy, V., Lehours, A.-C. and Fonty, G. (2012). Methanobacterium lacus sp. nov., isolated from the profundal sediment of a freshwater meromictic lake. International Journal of Systematic and Evolutionary Microbiology, 62(7), 1625–1629. https://doi.org/10.1099/ijs.0.034538-0 DOI: https://doi.org/10.1099/ijs.0.034538-0

Bosshard, P. P., Zbinden, R. and Altwegg, M. (2002). Turicibacter sanguinis gen. nov., sp. nov., a novel anaerobic, Gram-positive bacterium. International Journal of Systematic and Evolutionary Microbiology, 52(4), 1263–1266. https://doi.org/10.1099/00207713-52-4-1263 DOI: https://doi.org/10.1099/00207713-52-4-1263

Chamkha, M., Garcia, J. L. and Labat, M. (2001). Metabolism of cinnamic acids by some Clostridiales and emendation of the descriptions of Clostridium aerotolerans, Clostridium celerecrescens and Clostridium xylanolyticum. International Journal of Systematic and Evolutionary Microbiology, 51(6), 2105–2111. https://doi.org/10.1099/00207713-51-6-2105 DOI: https://doi.org/10.1099/00207713-51-6-2105

Cotta, M. A., Whitehead, T. R., Collins, M. D. and Lawson, P. A. (2004). Atopostipes suicloacale gen. nov., sp. nov., isolated from an underground swine manure storage pit. Anaerobe, 10(3), 191–195. https://doi.org/10.1016/j.anaerobe.2004.04.001 DOI: https://doi.org/10.1016/j.anaerobe.2004.04.001

Dai, Y., Yan, Z., Jia, L., Zhang, S., Gao, L., Wei, X., Mei, Z. and Liu, X. (2016). The composition, localization and function of low-temperature-adapted microbial communities involved in methanogenic degradations of cellulose and chitin from Qinghai–Tibetan Plateau wetland soils. Journal of Applied Microbiology, 121(1), 163–176. https://doi.org/10.1111/jam.13164 DOI: https://doi.org/10.1111/jam.13164

De Maayer, P., Anderson, D., Cary, C. and Cowan, D. A. (2014). Some like it cold: understanding the survival strategies of psychrophiles. EMBO Reports, 15(5), 508–517. https://doi.org/10.1002/embr.201338170 DOI: https://doi.org/10.1002/embr.201338170

Deng, Y., Guo, X., Wang, Y., He, M., Ma, K., Wang, H., Chen, X., Kong, D., Yang, Z. and Ruan, Z. (2015). Terrisporobacter petrolearius sp. nov., isolated from an oilfield petroleum reservoir. International Journal of Systematic and Evolutionary Microbiology, 65(10), 3522–3526. https://doi.org/10.1099/ijsem.0.000450 DOI: https://doi.org/10.1099/ijsem.0.000450

DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P. and Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72(7), 5069–5072. https://doi.org/10.1128/AEM.03006-05 DOI: https://doi.org/10.1128/AEM.03006-05

Domingo, M.-C., Huletsky, A., Boissinot, M., Helie, M.-C., Bernal, A., Bernard, K. A., Grayson, M. L., Picard, F. J. and Bergeron, M. G. (2009). Clostridium lavalense sp. nov., a glycopeptide-resistant species isolated from human faeces. International Journal Of Systematic And Evolutionary Microbiology, 59(3), 498–503. https://doi.org/10.1099/ijs.0.001958-0 DOI: https://doi.org/10.1099/ijs.0.001958-0

Dong, L., Cao, G., Guo, X., Liu, T., Wu, J., & Ren, N. (2019). Efficient biogas production from cattle manure in a plug flow reactor: A large scale long term study. Bioresource Technology, 278, 450–455. https://doi.org/10.1016/j.biortech.2019.01.100 DOI: https://doi.org/10.1016/j.biortech.2019.01.100

Eckenfelder, W. W. and O’Connor, D. J. (2013). Biological waste treatment. Elsevier.

Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. and Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16), 2194–2200. https://doi.org/10.1093/bioinformatics/btr381 DOI: https://doi.org/10.1093/bioinformatics/btr381

Guo, P., Zhou, J., Ma, R., Yu, N. and Yuan, Y. (2019). Biogas production and heat transfer performance of a multiphase flow digester. Energies, 12(10), 1960. https://doi.org/10.3390/en12101960 DOI: https://doi.org/10.3390/en12101960

Hagen, L. H., Vivekanand, V., Linjordet, R., Pope, P. B., Eijsink, V. G. H. and Horn, S. J. (2014). Microbial community structure and dynamics during co-digestion of whey permeate and cow manure in continuous stirred tank reactor systems. Bioresource Technology, 171, 350–359. https://doi.org/10.1016/j.biortech.2014.08.095 DOI: https://doi.org/10.1016/j.biortech.2014.08.095

He, T., Guan, W., Luan, Z. and Xie, S. (2016). Spatiotemporal variation of bacterial and archaeal communities in a pilotscale constructed wetland for surface water treatment. Applied Microbiology and Biotechnology, 100(3), 1479–1488. https://doi.org/10.1007/s00253-015-7072-5 DOI: https://doi.org/10.1007/s00253-015-7072-5

Jha, P. and Schmidt, S. (2017). Reappraisal of chemical interference in anaerobic digestion processes. Renewable and Sustainable Energy Reviews, 75, 954–971. https://doi.org/10.1016/j.rser.2016.11.076 DOI: https://doi.org/10.1016/j.rser.2016.11.076

Lawrence, A. W. and McCarty, P. L. (1969). Kinetics of methane fermentation in anaerobic treatment. Journal (Water Pollution Control Federation), R1–R17.

Lawson, P. A., & Rainey, F. A. (2016). Proposal to restrict the genus Clostridium Prazmowski to Clostridium butyricum and related species. International Journal of Systematic and Evolutionary Microbiology, 66(2), 1009-1016. DOI: https://doi.org/10.1099/ijsem.0.000824

Lettinga, G., Rebac, S. and Zeeman, G. (2001). Challenge of psychrophilic anaerobic wastewater treatment. TRENDS in Biotechnology, 19(9), 363–370. https://doi.org/10.1016/S0167-7799(01)01701-2 DOI: https://doi.org/10.1016/S0167-7799(01)01701-2

Li, Y., Meng, Z., Xu, Y., Shi, Q., Ma, Y., Aung, M., Cheng, Y. and Zhu, W. (2021). Interactions between anaerobic fungi and methanogens in the rumen and their biotechnological potential in biogas production from lignocellulosic materials. Microorganisms, 9(1), 190. https://doi.org/10.3390/microorganisms9010190 DOI: https://doi.org/10.3390/microorganisms9010190

Looft, T., Levine, U. Y. and Stanton, T. B. (2013). Cloacibacillus porcorum sp . nov ., a mucin-degrading bacterium from the swine intestinal tract and emended description of the genus Cloacibacillus, 63(6), 1960–1966. https://doi.org/10.1099/ijs.0.044719-0 DOI: https://doi.org/10.1099/ijs.0.044719-0

Ma, K., Liu, X. and Dong, X. (2005). Methanobacterium beijingense sp. nov., a novel methanogen isolated from anaerobic digesters. International Journal of Systematic and Evolutionary Microbiology, 55(1), 325–329. https://doi.org/10.1099/ijs.0.63254-0 DOI: https://doi.org/10.1099/ijs.0.63254-0

Manyi-Loh, C. E., Mamphweli, S. N., Meyer, E. L., Makaka, G., Simon, M. and Okoh, A. I. (2016). An overview of the control of bacterial pathogens in cattle manure. International Journal of Environmental Research and Public Health, 13(9). https://doi.org/10.3390/ijerph13090843 DOI: https://doi.org/10.3390/ijerph13090843

McKinney, R. E. (1962). Mathematics of completemixing activated sludge. Journal of the Sanitary Engineering Division, 88(3), 87–113. https://doi.org/10.1061/JSEDAI.0000389 DOI: https://doi.org/10.1061/JSEDAI.0000389

Muratçobano lu, H., Gökçek, Ö. B., Mert, R. A., Zan, R. and Demirel, S. (2020). Simultaneous synergistic effects of graphite addition and co-digestion of food waste and cow manure: Biogas production and microbial community. Bioresource Technology, 309, 123365. https://doi.org/10.1016/j.biortech.2020.123365 DOI: https://doi.org/10.1016/j.biortech.2020.123365

Murray, W. D., Hofmann, L., Campbell, N. L. and Madden, R. H. (1986). Clostridium lentocellum sp. nov., a cellulolytic species from river sediment containing paper-mill waste. Systematic and Applied Microbiology, 8(3), 181–184. https://doi.org/10.1016/S0723-2020(86)80074-1 DOI: https://doi.org/10.1016/S0723-2020(86)80074-1

NAKAMURA, L. K. (1981). Lactobacillus amylovorus, a New Starch-Hydrolyzing Species from Cattle Waste-Corn Fermentations. International Journal of Systematic Bacteriology, 31(1), 56–63. https://doi.org/10.1099/00207713-31-1-56 DOI: https://doi.org/10.1099/00207713-31-1-56

Nishiyama, T., Ueki, A., Kaku, N., Watanabe, K. and Ueki, K. (2009). Bacteroides graminisolvens sp. nov., a xylanolytic anaerobe isolated from a methanogenic reactor treating cattle waste. International Journal of Systematic and Evolutionary Microbiology, 59(8), 1901–1907. https://doi.org/10.1099/ijs.0.008268-0 DOI: https://doi.org/10.1099/ijs.0.008268-0

Nkamga, V. D., Henrissat, B. and Drancourt, M. (2017). Archaea: Essential inhabitants of the human digestive microbiota. Human Microbiome Journal, 3, 1–8. https://doi.org/10.1016/j.humic.2016.11.005 DOI: https://doi.org/10.1016/j.humic.2016.11.005

O’Reilly, J., Lee, C., Collins, G., Chinalia, F., Mahony, T. and O’Flaherty, V. (2009). Quantitative and qualitative analysis of methanogenic communities in mesophilically and psychrophilically cultivated anaerobic granular biofilims. Water Research, 43(14), 3365–3374. https://doi.org/10.1016/j.watres.2009.03.039 DOI: https://doi.org/10.1016/j.watres.2009.03.039

Patel, G. B. (1984). Characterization and nutritional properties of Methanothrix concilii sp. nov., a mesophilic, aceticlastic methanogen. Canadian Journal of Microbiology, 30(11), 1383–1396. https://doi.org/10.1139/m84-221 DOI: https://doi.org/10.1139/m84-221

Rea, S., Bowman, J. P., Popovski, S., Pimm, C. and Wright, A.-D. G. (2007). Methanobrevibacter millerae sp. nov. and Methanobrevibacter olleyae sp. nov., methanogens from the ovine and bovine rumen that can utilize formate for growth. International Journal of Systematic and Evolutionary Microbiology, 57(3), 450–456. https://doi.org/10.1099/ijs.0.63984-0 DOI: https://doi.org/10.1099/ijs.0.63984-0

Reintjes, G., Fuchs, B. M., Scharfe, M., Wiltshire, K. H., Amann, R. and Arnosti, C. (2020). Short-term changes in polysaccharide utilization mechanisms of marine bacterioplankton during a spring phytoplankton bloom. Environmental Microbiology, 22(5), 1884–1900. https://doi.org/10.1111/1462-2920.14971 DOI: https://doi.org/10.1111/1462-2920.14971

Ricaboni, D., Mailhe, M., Khelaifia, S., Raoult, D. and Million, M. (2016). Romboutsia timonensis, a new species isolated from human gut. New Microbes and New Infections, 12, 6–7. https://doi.org/10.1016/j.nmni.2016.04.001 DOI: https://doi.org/10.1016/j.nmni.2016.04.001

Robert, S., Mah. R. A. and Ralph, R. (1984). Isolation and Characterization of an Anaerobic, Cellulolytic Bacterium, Clostridium cellulovorans sp. nov. Applied and Environmental Microbiology, 48(1), 88–93. https://doi.org/10.1128/aem.48.1.88-93.1984 DOI: https://doi.org/10.1128/aem.48.1.88-93.1984

Roggenbuck, M., Bærholm Schnell, I., Blom, N., Bælum, J., Bertelsen, M. F., Sicheritz-Pontén, T., Sørensen, S. J., Thomas, M., Gilbert, P. and Hansen, L. H. (2014). The microbiome of New World vultures. Nature Communications, 5(1), 1–8. https://doi.org/10.1038/ncomms6498 DOI: https://doi.org/10.1038/ncomms6498

Sakamoto, M. and Ohkuma, M. (2011). Identification and classification of the genus Bacteroides by multilocus sequence analysis. Microbiology, 157(12), 3388–3397. https://doi.org/10.1099/mic.0.052332-0 DOI: https://doi.org/10.1099/mic.0.052332-0

Seib, M. D., Berg, K. J. and Zitomer, D. H. (2016). Influent wastewater microbiota and temperature influence anaerobic membrane bioreactor microbial community. Bioresource Technology, 216, 446–452. https://doi.org/10.1016/j.biortech.2016.05.098 DOI: https://doi.org/10.1016/j.biortech.2016.05.098

Smith, P. H. and Hungate, R. E. (1958). Isolation and characterization of Methanobacterium ruminantium n. sp. Journal of Bacteriology, 75(6), 713–718. https://doi.org/10.1128/jb.75.6.713-718.1958 DOI: https://doi.org/10.1128/jb.75.6.713-718.1958

Sousa, D. Z., Smidt, H., Alves, M. M., & Stams, A. J. M. (2007). Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long-chain fatty acids in co-culture with Methanobacterium formicicum. International Journal of Systematic and Evolutionary Microbiology, 57(3), 609–615. https://doi.org/10.1099/ijs.0.64734-0 DOI: https://doi.org/10.1099/ijs.0.64734-0

Tampio, E. A., Blasco, L., Vainio, M. M., Kahala, M. M. and Rasi, S. E. (2019). Volatile fatty acids (VFAs) and methane from food waste and cow slurry: Comparison of biogas and VFA fermentation processes. GCB Bioenergy, 11(1), 72–84. https://doi.org/10.1111/gcbb.12556 DOI: https://doi.org/10.1111/gcbb.12556

Tian, G., Yang, B., Dong, M., Zhu, R., Yin, F., Zhao, X.,Wang, Y., Xiao, W., Wang, Q. and Cui, X. (2018). The effect of temperature on the microbial communities of peak biogas production in batch biogas reactors. Renewable Energy, 123, 15-25. https://doi.org/10.1016/j.renene.2018.01.119 DOI: https://doi.org/10.1016/j.renene.2018.01.119

Von Stockar, U. and Liu, J. S. (1999). Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1412(3), 191-211. https://doi.org/10.1016/S0005-2728(99)00065-1 DOI: https://doi.org/10.1016/S0005-2728(99)00065-1

Wagner, D., Schirmack, J., Ganzert, L., Morozova, D. and Mangelsdorf, K. (2013). Methanosarcina soligelidi sp. nov., a desiccation-and freeze-thaw-resistant methanogenic archaeon from a Siberian permafrost-affected soil. International Journal of Systematic and Evolutionary Microbiology, 63(8), 2986–2991. https://doi.org/10.1099/ijs.0.046565-0 DOI: https://doi.org/10.1099/ijs.0.046565-0

Wang, M., Liu, Y., Jiang, X., Fang, J., Lyu, Q., Wang, X. and Yan, Z. (2021). Multi-omics reveal the structure and function of microbial community in co-digestion of corn straw and pig manure. Journal of Cleaner Production, 322, 129150. https://doi.org/10.1016/j.jclepro.2021.129150 DOI: https://doi.org/10.1016/j.jclepro.2021.129150

Wessels, A. G. (2022). Influence of the gut microbiome on feed intake of farm animals. Microorganisms, 10(7), 1305 https://doi.org/10.3390/microorganisms10071305 DOI: https://doi.org/10.3390/microorganisms10071305

Wu, C., Sun, W., Huang, Y., Dai, S., Peng, C., Zheng, Y. and Hao, J. (2022). Effects of different additives on the bacterial community and fermentation mode of wholeplant paper mulberry silage. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.904193 DOI: https://doi.org/10.3389/fmicb.2022.904193

Xiao, Y.-P., Hui, W., Wang, Q., Roh, S. W., Shi, X.-Q., Shi, J.-H., and Quan, Z.-X. (2009). Pseudomonas caeni sp. nov., a denitrifying bacterium isolated from the sludge of an anaerobic ammonium-oxidizing bioreactor. International Journal of Systematic and Evolutionary Microbiology, 59(10), 2594–2598. https://doi.org/10.1099/ijs.0.005108-0 DOI: https://doi.org/10.1099/ijs.0.005108-0

Yang, B., Wang, C., Zhao, X., Liu, J., Yin, F., Liang, C., Wu, K., Liu, J., Yang, H. and Zhang, W. (2022). Effects of environmental factors on low temperature anaerobic digestion of pig manure. Environmental Research Communications, 4(12), 125006. https://doi.org/10.1088/2515-7620/aca647 DOI: https://doi.org/10.1088/2515-7620/aca647

Yang, B., Yin, F., Wang, C., Zhao, X., Liu, J., Wu, K., Yang, H. and Zhang, W. (2019). Construction of biogas metabolic pathway in a low-temperature biogas fermentation system. Energy Science & Engineering, 7(6), 3160–3173. https://doi.org/10.1002/ese3.488 DOI: https://doi.org/10.1002/ese3.488

Zellner, G., Stackebrandt, E., Messner, P., Tindall, B. J., Conway de Macario, E., Kneifel, H. and Winter, J. (1989). Methanocorpusculaceae fam. nov., represented by Methanocorpusculum parvum, Methanocorpusculum sinense spec. nov. and Methanocorpusculum bavaricum spec. nov. Archives of Microbiology, 151(5), 381–390. https://doi.org/10.1007/BF00416595 DOI: https://doi.org/10.1007/BF00416595

Zhao, Y., Boone, D. R., Mah, R. A., Boone, J. E. and Xun, L. (1989). Isolation and characterization of Methanocorpusculum labreanum sp. nov. from the LaBrea Tar Pits. International Journal of Systematic and Evolutionary Microbiology, 39(1), 10–13. https://doi.org/10.1099/00207713-39-1-10 DOI: https://doi.org/10.1099/00207713-39-1-10

How to Cite

APA

Budianto, B., Zefki Okta , F. and Yasin, R. E. (2024). THE ROLE OF BACTERIAL AND ARCHAEA IN DETERMINING THE METABOLIC PATHWAY OF BIOGAS FERMENTATION AT LOW TEMPERATURES. Acta Biológica Colombiana, 29(1), 99–111. https://doi.org/10.15446/abc.v29n1.106266

ACM

[1]
Budianto, B., Zefki Okta , F. and Yasin, R.E. 2024. THE ROLE OF BACTERIAL AND ARCHAEA IN DETERMINING THE METABOLIC PATHWAY OF BIOGAS FERMENTATION AT LOW TEMPERATURES. Acta Biológica Colombiana. 29, 1 (Jan. 2024), 99–111. DOI:https://doi.org/10.15446/abc.v29n1.106266.

ACS

(1)
Budianto, B.; Zefki Okta , F.; Yasin, R. E. THE ROLE OF BACTERIAL AND ARCHAEA IN DETERMINING THE METABOLIC PATHWAY OF BIOGAS FERMENTATION AT LOW TEMPERATURES. Acta biol. Colomb. 2024, 29, 99-111.

ABNT

BUDIANTO, B.; ZEFKI OKTA , F.; YASIN, R. E. THE ROLE OF BACTERIAL AND ARCHAEA IN DETERMINING THE METABOLIC PATHWAY OF BIOGAS FERMENTATION AT LOW TEMPERATURES. Acta Biológica Colombiana, [S. l.], v. 29, n. 1, p. 99–111, 2024. DOI: 10.15446/abc.v29n1.106266. Disponível em: https://revistas.unal.edu.co/index.php/actabiol/article/view/106266. Acesso em: 19 jan. 2025.

Chicago

Budianto, Budianto, Feri Zefki Okta, and Rinny Ermiyanti Yasin. 2024. “THE ROLE OF BACTERIAL AND ARCHAEA IN DETERMINING THE METABOLIC PATHWAY OF BIOGAS FERMENTATION AT LOW TEMPERATURES”. Acta Biológica Colombiana 29 (1):99-111. https://doi.org/10.15446/abc.v29n1.106266.

Harvard

Budianto, B., Zefki Okta , F. and Yasin, R. E. (2024) “THE ROLE OF BACTERIAL AND ARCHAEA IN DETERMINING THE METABOLIC PATHWAY OF BIOGAS FERMENTATION AT LOW TEMPERATURES”, Acta Biológica Colombiana, 29(1), pp. 99–111. doi: 10.15446/abc.v29n1.106266.

IEEE

[1]
B. Budianto, F. Zefki Okta, and R. E. Yasin, “THE ROLE OF BACTERIAL AND ARCHAEA IN DETERMINING THE METABOLIC PATHWAY OF BIOGAS FERMENTATION AT LOW TEMPERATURES”, Acta biol. Colomb., vol. 29, no. 1, pp. 99–111, Jan. 2024.

MLA

Budianto, B., F. Zefki Okta, and R. E. Yasin. “THE ROLE OF BACTERIAL AND ARCHAEA IN DETERMINING THE METABOLIC PATHWAY OF BIOGAS FERMENTATION AT LOW TEMPERATURES”. Acta Biológica Colombiana, vol. 29, no. 1, Jan. 2024, pp. 99-111, doi:10.15446/abc.v29n1.106266.

Turabian

Budianto, Budianto, Feri Zefki Okta, and Rinny Ermiyanti Yasin. “THE ROLE OF BACTERIAL AND ARCHAEA IN DETERMINING THE METABOLIC PATHWAY OF BIOGAS FERMENTATION AT LOW TEMPERATURES”. Acta Biológica Colombiana 29, no. 1 (January 2, 2024): 99–111. Accessed January 19, 2025. https://revistas.unal.edu.co/index.php/actabiol/article/view/106266.

Vancouver

1.
Budianto B, Zefki Okta F, Yasin RE. THE ROLE OF BACTERIAL AND ARCHAEA IN DETERMINING THE METABOLIC PATHWAY OF BIOGAS FERMENTATION AT LOW TEMPERATURES. Acta biol. Colomb. [Internet]. 2024 Jan. 2 [cited 2025 Jan. 19];29(1):99-111. Available from: https://revistas.unal.edu.co/index.php/actabiol/article/view/106266

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Tim Böer, Miriam Antonia Schüler, Alina Lüschen, Lena Eysell, Jannina Dröge, Melanie Heinemann, Lisa Engelhardt, Mirko Basen, Rolf Daniel, Anja Poehlein. (2024). Isolation and characterization of novel acetogenic strains of the genera Terrisporobacter and Acetoanaerobium. Frontiers in Microbiology, 15 https://doi.org/10.3389/fmicb.2024.1426882.

Dimensions

PlumX

Article abstract page views

272

Downloads

Download data is not yet available.