Published
ASSESSMENT OF GENETIC DIVERSITY OF Solanum lycopersicum var. cerasiforme IN VERACRUZ, MEXICO
Evaluación de la diversidad genética de Solanum lycopersicum var. cerasiforme en Veracruz, México
DOI:
https://doi.org/10.15446/abc.v29n3.108548Keywords:
Genetic resources, Genetic variation, repetitive DNA (en)ADN repetitivo, recursos genéticos, variación genética (es)
Downloads
Solanum lycopersicum var. cerasiforme is widely distributed in Veracruz, Mexico, and represents genetic material that must be evaluated as a genetic pool of groups of tomato plants that can be used in a management program. The objective of the study was to evaluate the genetic diversity of S. l. var. cerasiforme from 12 sites in the state of Veracruz, Mexico, using SSR markers. DNA was extracted from the leaf tissue of tomato plants from 12 sites of occurrence and their genetic diversity was evaluated using 14 SSR markers, amplified with the polymerase chain reaction technique, and visualized in polyacrylamide gels. Genetic diversity and structure were with POPgene, FSTAT, GenAlex, STRUCTURE, and STRUCTURE Harvester software. With 73.74 % Polymorphic Information Content, the observed heterozygosity (Ho=0.2251) was lower than the heterozygosity within, between groups, and the total, an indicator of low genetic diversity, due to the high genetic differentiation coefficient (GST=0.743) The genetic differentiation index indicated 35 % differentiation (Fst= 0.655), with a low differentiation coefficient between (Fis= 0.209) and within groups (Fit= 0.727). In the dendrogram, four main groups and four subgroups were formed, related based on geographic-genetic distance. The groups of tomato plants showed genetic differentiation and may constitute valuable germplasm for genetic diversity management programs.
Solanum lycopersicum var. cerasiforme se encuentra ampliamente distribuido en Veracruz, México y representa material genético que debe ser evaluado como un acervo genético para su conservación y su mejoramiento. Sin embargo, no existe información sobre el pool genético de grupos de plantas de tomate silvestre que pueda ser utilizado en un programa de manejo. El objetivo del estudio fue evaluar la diversidad genética de Solanum lycopersicum var. cerasiforme de 12 sitios del estado de Veracruz, México utilizando marcadores SSR. Se extrajo ADN de tejido foliar de plantas de tomate de 12 sitios de ocurrencia y se evaluó su diversidad genética utilizando 14 marcadores SSR, amplificados con la técnica de reacción en cadena de la polimerasa y visualizados en geles de poliacrilamida. La diversidad y estructura genética se evaluó con los softwares POPgene, FSTAT, GenAlex, STRUCTURE y STRUCTURE Harvester. Con un 73,74 % de Contenido de Información Polimórfica, la heterocigosidad observada (Ho=0,2251) fue menor a la heterocigosidad dentro, entre grupos y a la total; indicador de baja diversidad génica, debida al alto coeficiente de diferenciación genética (GST=0,743). El índice de diferenciación genética indicó un 35 % de diferenciación (Fst= 0,655), con un bajo coeficiente de diferenciación entre (Fis= 0,209) y dentro de grupos (Fit= 0,727). En el dendograma se formaron cuatro grupos principales y cuatro subgrupos, relacionados con base en la distancia geográfica-genética. Los grupos de plantas tomate mostraron diferenciación genética y pueden constituir germoplasma valioso para programas de manejo de la diversidad genética.
References
Aguirre, N. C., López, W., Orozco-Cárdenas, M., Coronado, Y. M., Vallejo-Cabrera, F., Aguirre, N. C., López, W., Orozco-Cárdenas, M., Coronado, Y. M. and Vallejo-Cabrera, F. (2017). Use of microsatellites for evaluation of genetic diversity in cherry tomato. Bragantia, 76(2), 220-228. https://doi.org/10.1590/1678-4499.116
Al Shaye, N., Migdadi, H., Charbaji, A., Alsayegh, S., Daoud, S., AL-Anazi, W. and Alghamdi, S. (2018). Genetic variation among Saudi tomato (Solanum lycopersicum L.) landraces studied using SDS-PAGE and SRAP markers. Saudi Journal of Biological Sciences, 25(6), 1007-1015. https://doi.org/10.1016/j.sjbs.2018.04.014
Benor, S., Zhang, M., Wang, Z. and Zhang, H. (2008). Assessment of genetic variation in tomato (Solanum lycopersicum L.) inbred lines using SSR molecular markers. Journal of Genetics and Genomics, 35(6), 373-379. https://doi.org/10.1016/S1673-8527(08)60054-5
Blanca J, Cañizares J, Cordero L, Pascual L, Diez MJ, et al. (2012) Variation Revealed by SNP Genotyping and Morphology Provides Insight into the Origin of the Tomato. PLOS ONE, 7(10): e48198. https://doi.org/10.1371/journal.pone.0048198
Bredemeijer, G., Cooke, J., Ganal, M., Peeters, R., Isaac, P., Noordijk, Y., Rendell, S., Jackson, J., Röder, M., Wendehake, K., Dijcks, M., Amelaine, M., Wickaert, V., Bertrand, L. and Vosman, B. (2002). Construction and testing of a microsatellite database containing more than 500 tomato varieties. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 105(6-7), 1019-1026. https://doi.org/10.1007/s00122-002-1038-6
Caballero, A. and García-Dorado, A. (2013). Allelic Diversity and Its Implications for the Rate of Adaptation. Genetics, 195(4), 1373-1384. https://doi.org/10.1534/genetics.113.158410
Chetty, V. J., Ceballos, N., Garcia, D., Narváez-Vásquez, J., Lopez, W. and Orozco-Cárdenas, M. L. (2013). Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom. Plant Cell Reports, 32(2), 239-247. https://doi.org/10.1007/s00299-012-1358-1
Délices, G., Otto, R., Nuñez Pastrana, R., Andrés Meza, P., Serna-Lagunes, R. and Gamez Pastrana, R. (2019). Biogeografía del tomate Solanum lycopersicum var. Cerasiforme (Solanaceae) en su centro de origen (sur de América) y de domesticación (México). Revista de Biología Tropical, 67(4), 1023-1036. https://doi.org/10.15517/rbt.v67i4.33754
Délices, G., Leyva-Ovalle, O. R., Mota-Vargas, C., Nunez-Pastrana, R., Andres-Meza, P., & Herrera-Corredor, J. A. (2021). Morphological characterization of wild populations of Solanum lycopersicum var. cerasiforme in the tomato domestication area. Emirates Journal of Food and Agriculture, 33(4), 303-313. https://doi.org/10.9755/ejfa.2021.v33.i4.2684
Domingos, J. P. (2011). Análisis de la variabilidad en las especies del subgénero Eulycopersicon más relacionadas con el tomate cultivado. [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/10914
Evanno, G., Regnaut, S. and Goudet, J. (2005). Detecting the number of clusters of individuals using the software Structure: A simulation study. Molecular Ecology, 14(8), 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
FAOSTAT. (2020). Statistics division. Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#home
García-Martínez, S., Andreani, L., Garcia-Gusano, M., Geuna, F. and Ruiz, J. J. (2006). Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: Utility for grouping closely related traditional cultivars. Genome, 49(6), 648-656. https://doi.org/10.1139/g06-016
Goudet, J. F. S. T. A. T. (1995). FSTAT (version 1.2): a computer program to calculate F-statistics. Journal of heredity, 86(6), 485-486.
https://doc.rero.ch/record/294716/files/86-6-485.pdf
He, C., Poysa, V. and Yu, K. (2003). Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon sculentum cultivars. Theoretical and Applied Genetics, 106(2), 363-373. https://doi.org/10.1007/s00122-002-1076-0
Jenkins, J.A. (1948). The origin of the cultivated tomato. Econ. Bot., 2, 379–392. https://doi.org/10.1007/BF02859492
Kaushal, A., Singh, A., and Jeena, A.S. (2017). Genetic diversity in tomato (Solanum lycopersicum L.) genotypes revealed by simple sequence repeats (SSR) markers. Journal of Applied and Natural Science, 9(2), 966-973. https://doi.org/10.31018/jans.v9i2.1305
Korir, N. K., Diao, W., Tao, R., Li, X., Kayesh, E., Li, A., Zhen, W. and Wang, S. (2014). Genetic diversity and relationships among different tomato varieties revealed by EST-SSR markers. Genetics and Molecular Research, 13(1), 43-53. https://doi.org/10.4238/2014.January.8.3
Kwon, Y.-S., Park, S.-G. and Yi, S.-I. (2009). Assessment of genetic variation among commercial tomato (Solanum lycopersicum L) varieties using SSR markers and morphological characteristics. Genes & Genomics, 31(1), 1-10. https://doi.org/10.1007/BF03191132
Lewis, P. O. and Zaykin, D. 2001. Genetic Data Analysis: Computer program for the analysis of allelic data. Version 1.0 (d16c). Free program distributed by the authors over the internet from https://plewis.github.io/software/
Long, J. (2022). De tomates y jitomates en el siglo XVI. Estudios de Cultura Náhuatl, 25, 239-252. https://nahuatl.historicas.unam.mx/index.php/ecn/article/view/78174
Mazzucato, A., Papa, R., Bitocchi, E., Mosconi, P., Nanni, L., Negri, V., Picarella, M. E., Siligato, F., Soressi, G. P., Tiranti, B. and Veronesi, F. (2008). Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theoretical and Applied Genetics, 116(5), 657-669. https://doi.org/10.1007/s00122-007-0699-6
Meng, F-J., Xu, X-Y., Huang, F-L. and Li, J-F. (2010). Analysis of genetic diversity in cultivated and wild tomato varieties in Chinese market by RAPD and SSR. Agricultural Sciences in China, 9(10), 1430-1437. https://doi.org/10.1016/S1671-2927(09)60234-0
Miller, J. C. and Tanksley, S. D. (1990). RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. TAG. Theoretical and Applied Genetics, 80(4), 437-448. https://doi.org/10.1007/BF00226743
Mohammadi, S. A. and Prasanna, B. M. (2003). Analysis of Genetic Diversity in Crop Plants—Salient Statistical Tools and Considerations. Crop Science, 43(4), 1235-1248. https://doi.org/10.2135/cropsci2003.1235
Nei, M. (1973). Analysis of Gene Diversity in Subdivided Populations. Proceedings of the National Academy of Sciences, 70(12), 3321-3323. https://doi.org/10.1073/pnas.70.12.3321
Nyadanu, D., Aboagye, L. M., Akromah, R., Osei, M. K. and Dordoe, M. B. (2014). Agromorphological characterisation of Gboma eggplant, an indigenous fruit and leafy vegetable in Ghana. African Crop Science Journal, 22(4), 281-289. https://www.ajol.info/index.php/acsj/article/view/110423
Peakall, R. and Smouse, P. E. (2012). GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 28(19), 2537-2539. https://doi.org/10.1093/bioinformatics/bts460
Pritchard, J., Stephens, M. and Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155(2), 945-959. https://doi.org/10.1093/genetics/155.2.945
Rai, G. K., Jamwal, D., Singh, S., Parveen, A., Kumar, R. R., Singh, M., Rai, P. K. and Salgotra, R. K. (2016). Assessment of genetic variation in tomato (Solanum lycopersicum L.) based on quality traits and molecular markers. SABRAO Journal of Breeding & Genetics, 48(1): 80-89.
Rai, G. K., Kumar, R., Singh, A. K., Rai, P. K., Rai, M., Chaturvedi, A. K. and Rai, A. B. (2012). Changes in antioxidant and phytochemical properties of tomato (Lycopersicon esculentum Mill.) Under ambient condition. 44, 667-667.
Seymour, G.B. and Rose, J.K.C. (2022). Tomato molecular biology – special collection of papers for molecular horticulture. Mol Horticulture 2, 21. https://doi.org/10.1186/s43897-022-00042-z
Shirasawa, K. and Hirakawa, H. (2013). DNA marker applications to molecular genetics and genomics in tomato. Breeding Science, 63(1), 21-30. https://doi.org/10.1270/jsbbs.63.21
Vilas, A., Pérez-Figueroa, A., Quesada, H. and Caballero, A. (2015). Allelic diversity for neutral markers retains a higher adaptive potential for quantitative traits than expected heterozygosity. Molecular Ecology, 24(17), 4419-4432. https://doi.org/10.1111/mec.13334
Wright, S. (1984). Evolution and the Genetics of Populations, Volume 4: Variability Within and Among Natural Populations. University of Chicago Press.
Xu, Y. (2010). Molecular Plant Breeding. CABI. https://doi.org/10.1079/9781845933920.0000
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The acceptance of manuscripts by the Journal implies its electronic edition of open Access under Creative Commons Attribution License 4.0, and the inclusion and diffusion of the complete text through the institutional repository of the Universidad Nacional de Colombia and in all the specialized data bases that the editor considers adequate for its indexation to increase Journal visibility.
Acta Biológica Colombiana allows authors to archive, download and distribute the final published version, as well as pre-print and post-print versions including a header with the bibliographic reference of published article. The journal encourages the authors to distribute the final versión through Internet, for example in their personal or institutional web pages, and scientific social networks.